Incident Thermal Radiation through Duct Shield and Cooling Time of Mirror

Yusuke SAKAKIBARA (ICRR)

2011.8.4 LCGT f2f meeting

Incident Thermal Radiation through Duct Shield

Purpose of duct shield

• Thermal radiation from opening of 900 mm in diameter

 $P_0 = \epsilon \sigma T^4 A = 29.2 \text{ W}$ $\epsilon = 0.1$: Emissivity of duct (SUS) σ : Stefan-Boltzmann constant T = 300 KA: Area of opening

- Cooling power 3.6 W at 4 K (4 pulse tube cryocoolers of 0.9 W at 4 K)
- Thermal radiation can be decreased if solid angle reduces
- Thermal radiation reflected by metal shield pipe
 - Problem experienced in CLIO $P/P_0 = 0.213$ P = 6.22 W

Reducing thermal radiation by baffles

 Incident thermal radiation calculated using ray trace model by counting up number of reflections

$$\frac{P}{P_0} = \int R^{N(\theta)} \frac{d\Omega}{2\pi} = \int_0^{\pi/2} R^{N(\theta)} \sin \theta d\theta$$

 $P_0 = \epsilon \sigma T^4 A = 23.1 \text{ W}$ $A = \pi d^2$: Area of baffle opening $N(\theta)$: Number of reflections $R = 0.94 \pm 0.02$: Reflectivity of duct and baffles (Aluminum of A1070 measured at 10 um, 80 K)

Calculation of incident thermal radiation

• Apertures of baffles change linearly

```
L = 17 \text{ m}
```

 $2a = 900 \text{ mm}, 2d_r = 800 \text{ mm}, 2d_c = 250 \text{ mm}$

Thermal radiation can be sufficiently reduced by baffles

Cooling Time of Mirror

Cooling of inner shield

- Model is constructed to estimate initial cooling time
- Heat is transferred by conduction in sapphire fibers and heat links and radiation
- Inner shield of 410 kg is connected to the 2nd stages of 4 cryocoolers
 - Cooling power is derived from test result of LCGT cryocooler

Increased radiation by DLC coating

Summary

- Thermal radiation through duct shield can be sufficiently reduced by baffles
 - 200 mW (100 mW x 2 duct shields)
- It takes 20 days to cool down mirror with DLC coating
 - Research for high emissivity coating is now underway

Appendix(Conduction cooling of suspension system, No radiation)

• Thermal conductivity of heat links or sapphire fibers limits cooling time

Appendix(Conduction and radiation cooling of suspension system)

Appendix (Heat capacity)

Sapphire: Y.S.Touloukian: "Thermophysical Properties of Matter Volume 5 Specific Heat Nonmetallic Solids," IFI/Plenum (1970) Copper: AIST Network Database System for Thermophysical Property Data Aluminum: NIST http://cryogenics.nist.gov/MPropsMAY/5083%20Aluminum/5083Aluminum_rev.htm

Appendix (Thermal conductivity)

Sapphire: Y.S.Touloukian: "Thermophysical Properties of Matter Volume 5 Specific Heat Nonmetallic Solids," IFI/Plenum (1970) Aluminum: AIST Network Database System for Thermophysical Property Data

к [W/m/K]

Appendix (Emissivity)

Sapphire: Y.S.Touloukian: "Thermophysical Properties of Matter Volume 5 Specific Heat Nonmetallic Solids," IFI/Plenum (1970) Copper: Y.Sakakibara et al. TEION KOGAKU 2011;46