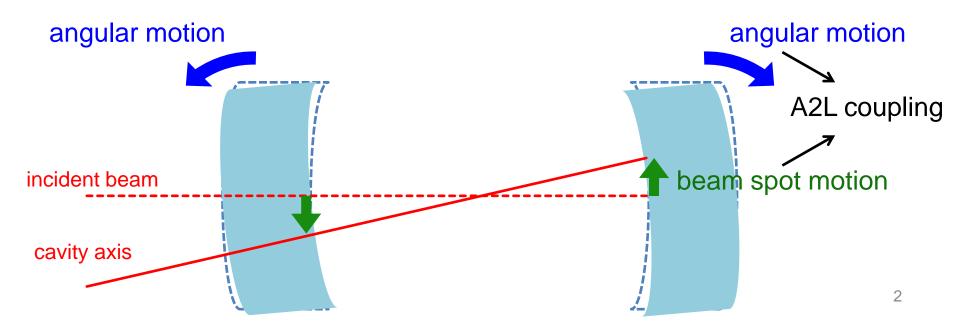
LCGT face to face meeting (ICRR University of Tokyo, Kashiwa)

Current Status of ASC Design for LCGT

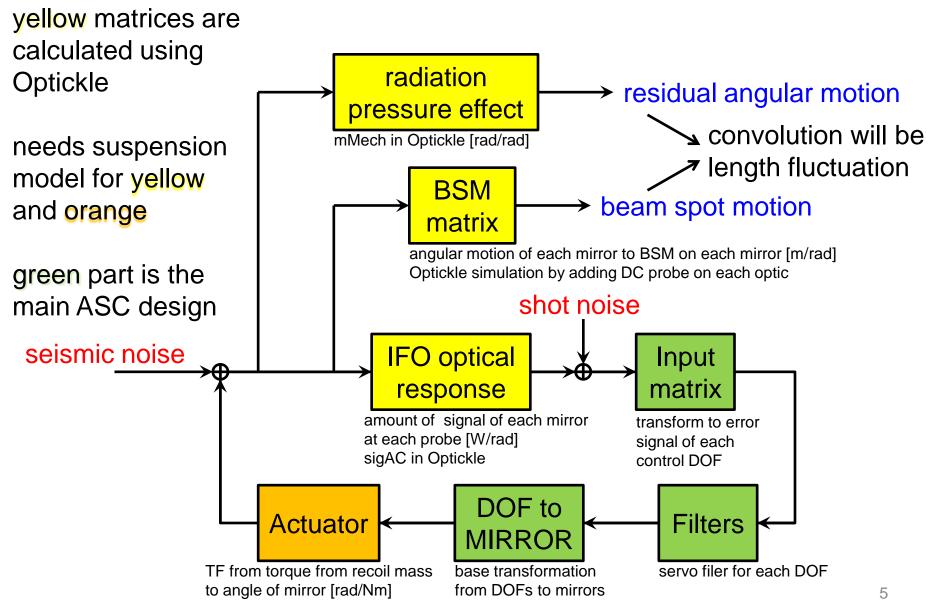

Yuta Michimura

Tsubono Group Department of Physics, University of Tokyo

Main Interferometer Group and Takanori Sekiguchi

What is ASC?

- Alignment Sensing and Control
- angular motion makes beam spot motion and (angular motion)×(BSM) makes length fluctuation → angular motion must be controlled
- global control(WFS) and local control(OpLev etc)



ASC is tough TR 11 mirrors, pitch+yaw for each ETMY angular instability of the main cavities due to cryogenic suspension radiation pressure anti-(Type-A; high resonance spring frequency) (unstable SOFT mode) ITMY PRM PR3 from laser and MC BS ITMX ETMX TRX PR2 POP SR2 REFL SR3 high degeneracy of WFS SRM signal from each mirror (needs demod phase + gouy phase optimization) to OMC 3

What we have done

- developed 3D rigid body model for modeling suspension (by T. Sekiguchi)
- developed a tool for simulating/designing WFS servo loop (this talk)
 - optical response of IFO is simulated using Optickle
 - loop noise calculation similar to *pickle* (aLIGO ASC tool)
 - uses suspension TF, angular seismic noise as input
 - matrix based, frequency domain $(11 \times 11 \times \text{freq matrix})$

Structure of ASC model

ASC design procedure

- step 0. choose control DOF
- step 1. select sensing ports demodulation/gouy phase optimization
- step 2. design servo filters (control loop)
- step 3. calculate residual angular motion
- step 4. calculate residual beam spot motion
- step 5. estimate A2L coupling
- step 6. do 0-5 for pitch and yaw
 → is total A2L noise below LCGT sensitivity?

1. Sensing port selection

AS BDC (min CS/CH)

Optimize demodulation phase + gouy phase and select sensing ports I / Q is demod phase difference, A / B is gouy phase difference

	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy	3.5	3.8	-0'.8	-16.8	2.1	3.9	4.0	36.0	83.8	83.8	83.8
max ampl	66522.5	-57318.2	-57.7	43.8	28726.4	-81234.2	-9402.2	-3818.7	-2485.2	-297.9	-156.4
Gouy	86	86	NaN	NaN	-6	86	86	-87	-86	-86	-86
ampl	- 6172.3	-5533.9	NaN	NaN	20108.3	-7887.1	-923.3	1472.1	1729.5	207.3	108.9
contami	- 1.7	3.7	NaN	NaN	8.6	2.6	22.4	7.3	6.1	50.9	96.9
N big sig	- 1	2	NaN	NaN	4	1	6	3	2	5	6

REFL f1 demodulation

CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy - 89.9	85.9	71.8	71.1	-13.8	-22.3	-57.0	19.2	-6.2	-6'.2	-6.2
max demod - 0.0	0.0	77.6	-88.3	0.6	0.0	0.0	0.0	-0.1	-0.1	-0.1
max ampl- <u>161213</u>	. 2 26218.0	-128.0	-153.4	-909.2	-3111.6	-620.1	6313.7	-384.4	-46.1	-24.2
Gouy71	0	0	0	0		0	0	0	NaN	NaN
demod – 1	-3	-90	-90	-90	-3	-3	-3	-4	NaN	NaN
ampl 1 52357.	5-1858.0	40.5	-49.7	35.9	-2876.0	-337.4	5954.7	-381.3	NaN	NaN
contami – 1.2	6.7	3.3	2.7	3.7	4.4	37.1	2.1	32.8	NaN	NaN
N big sig – 1	3	2	1	3	2	6	1	5	NaN	NaN

REFL_B1I (min CS)

REFL f2 demodulation

C	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
	9.9	84.0	76.4	-86.7	-74.9	-75.4	-78.1	26.3	-79.3	-79.3	-79.3
max demod - 0	0.1	0.2	8.5	-16.5	0.0	0.0	0.0	-0.0	89.8	89.8	89.8
max ampl 63	972.4	19501.2	-21.6	1 <u>3,3</u>	-4926.0	-14407.0	-2073.0	6213.0	0.0	0.0	0.0
	78	40	NaN	-/9	40	40	40	-1	NaN	NaN	NaN
	90	-90	NaN	-90	-90	-90	-90	-87	NaN	NaN	NaN
ampl - 26	55.0	105.4	NaN	3.7	67.6	185.4	21.8	291.7	NaN	NaN	NaN
contami – 1	.2	3.7	NaN	87.6	5.7	2.1	17.8	1.2	NaN	NaN	NaN
N big sig –	1	2	NaN	3	3	1	4	1	NaN	NaN	NaN

REFL_A2I (max CS)

TRX DC

	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy	25.6	74.8	-25.6	74.8	-10.4	0.5	0.4	-0.6	-36.3	-36.3	-36.3
max ampl	43183.8	15641.0	43183.3	15640.8	0.0	-43.4	-5.2	-2.6	0.0	0.0	0.0
Gouy		64	-15	64	NaN	NaN	NaN	NaN	NaN	NaN	NaN
ampl	30013.6	10865.5	-30013.4	10865.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN
contami	- 2.0	2.0	2.0	2.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
N big sig	1	1	2	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN

TRX_ADC (min CS/DS)

TRY DC

	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM		
max Gouy	25.6	74.8	-25.6	74.8	0.5	0.5	0.4	-0.6	-23.9	-23.9	-23.9		
max ampl	43183.8	15641.0	43183.4	-15640.8	-30.6	-43.4	-5.2	-2.6	-0.0	-0.0	-0.0		
Gouy	15	64	-15	64	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
ampl	30013.7	10865.5	30013.5	-10865.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
contami	- 2.0	2.0	2.0	2.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
N big sig	1	1	2	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN		

DH BS PR3 PR2 PRM SR3 CS CH DS SR2 SRM max Gouy - -19.4 -22.0 -24.7 -81.4 -44.3 88.1 87.0 64.5 64.5 64.5 -46.9 -7661.3 -8.2 -0.5 -507.3 -1310.5 -3375.0 1680.9 1.3 0.2 0.1 max ampl 2003 -2 71 70 NaN Gouy -2 NaN NaN 71 70 NaN NaN ampl -28338.6 -5091.0 NaN NaN 153.3 433.5 -2268.6 -1136.5 NaN NaN NaN 6.8 NaN 10.4 2.0 NaN NaN NaN contami 1.2 NaN 29.4 3.9 2 NaN NaN 3 2 NaN NaN NaN N bia sia 6

POP DC

POP_ADC (min CS)

POP f1 demodulation

CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy - 17.1	-32.9	51.8	51.8	39.3	-28.6	-27.3	19.6	-25.5	-25.5	-25.5
max demod ⊢ 0.1	0.1	-89.9	-89.9	-71.0	-0.1	-0.1	0.5	-0.0	-0.0	-0.0
max ampl <u>- 118.7</u> Gouy - 64	-119.7	53.4	-65.5	48.4	-70.7	-8.2	-8.3 -38	-164.2	-19.7	-10.3
Gouy – 64	-73	-81	-81	-82	-73	-73	-38	-73	-73	-73
demod – 0	-2	-89	-89	-89	-2	-2	-90	-2	-2	-2
amp <u> - 81.1</u>	-91.5	-36.3	44.5	-32.3	-50.5	-5.7	0.1	-110.7	-13.3	-7.0
contami ⊢ 1.3	3.3	<u>3.1</u>	2,5	3,6	6 <u>.</u> 0	52.9	13.1	2,7	<u>22.7</u>	43.2
N big sig – 1	2	2	1	$\underline{3}$	3	7	6	$\underline{1}$	5	6
		PC		PC)P_B	1I (m	nin CS)			

POP f2 demodulation

CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy - 72.6	76.6	81.8	79.5	75.5	75.5	75.5	75.4	81.5	81.5	81.5
max demod - 0.1	0.1	-26.9	-23.0	0.0	0.1	0.1	0.1	-90.0	-90.0	-90.0
max ampl -5076.6	5 2282.9	2.8	-4.0	1947.9	5511.2	660.5	335.8	0.0	0.0	0.0
Gouy⊢ -17	-20	70	70	68	-20	-20	-14	NaN	NaN	NaN
demod70	-70	90	90	90	-70	-70	75	NaN	NaN	NaN
ampl ⊢ -90.6	-55.7	-1.3	1.6	-2.6	-98.2	-11.6	-4.2	NaN	NaN	NaN
contami – 1.2	3.7	6.7	5.6	4.9	2.1	17.8	36.2	NaN	NaN	NaN
N big sig – 1	2	4	2	2	1	4	5	NaN	NaN	NaN

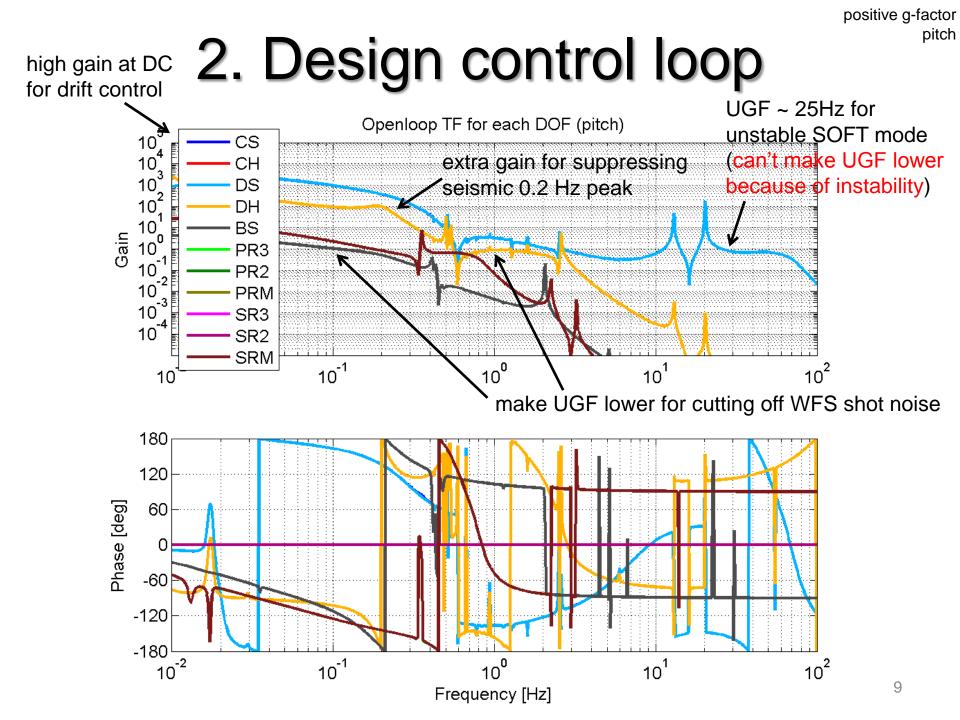
AS DC

CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy16.9	-16.9	-87.3	-30.2	-6.2	-24.9	-26.6	83.7	-13.3	-12.9	23.8
max ampl7.5	9.2	-0.2	0.3	-2.7	5.7	0.6	0.9	12.7	1.6	11
Gouy66	-66	74	77	73	77	77	73	64	65	73
ampl3.5	4.3	0.1	-0.1	-0.4	-0.8	-0.1	0.6	2.0	0.2	0.5
contami - 5.5	4.5	22.3	53.4	8.4	3.9	31.1	4.9	3.1	24.5	5.9
N big sig - 3	2	6	9	5	1	8	1	1	7	4

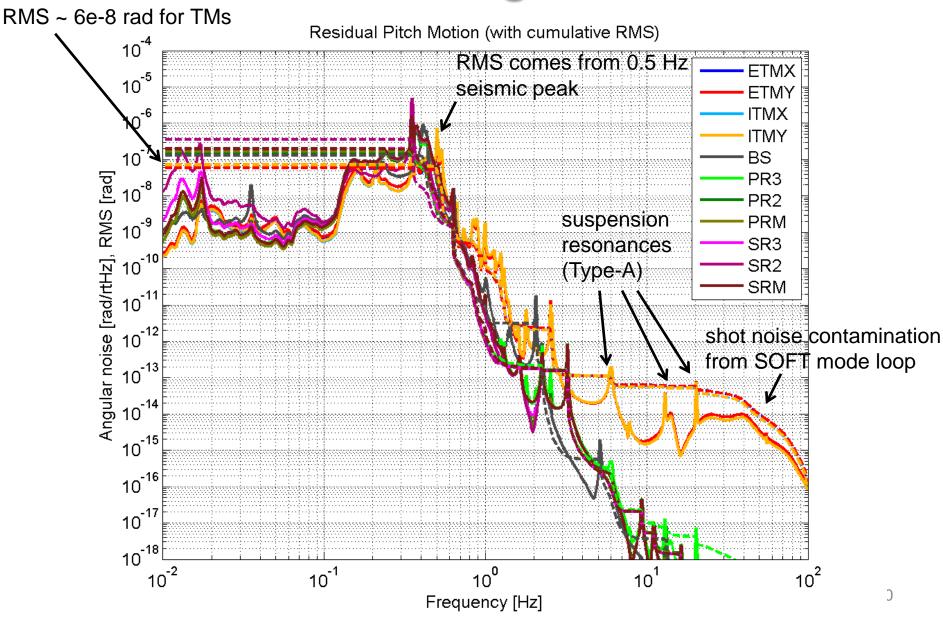
AS f1 demodulation

	cs	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
max Gouy - 8 max demod	3 4 .8 90.0	81.4 -90.0	89.5 -90.0	86.2 -90.0	-13.4 -90.0	89.6 -90.0	89.5 -90.0	88.6 -90.0	76.8 -90.0	77.1 -90.0	-67.5 89.3
max ampl	0.3	-0.0	-1511.0	-245.9	9.2	0.5	0.1	0.0	-0.0	-0.0	-0.0
	VaN VaN	NaÑ NaN	-4	- 0	-1	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaÑ NaN
ampi – 1	VaN	NaN	0.0	-0.0	0.0	NaN	NaN	NaN	NaN	NaN	NaN
contami – N N big sig – N	VaN VaN	NaN NaN	1	<u> </u>	3.9 3	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN

AS_A1Q (max DS)


TRY_ADC (min CS/DS)

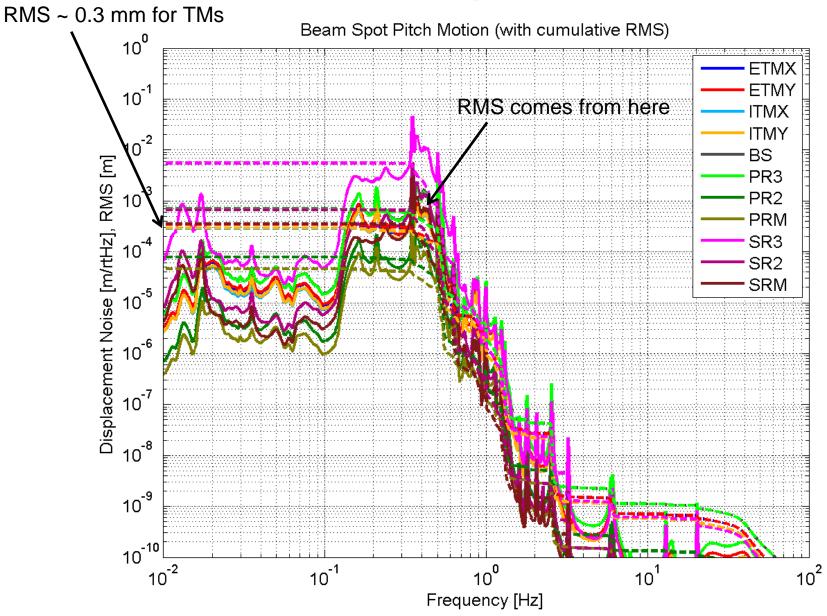
7


1. Sensing port selection

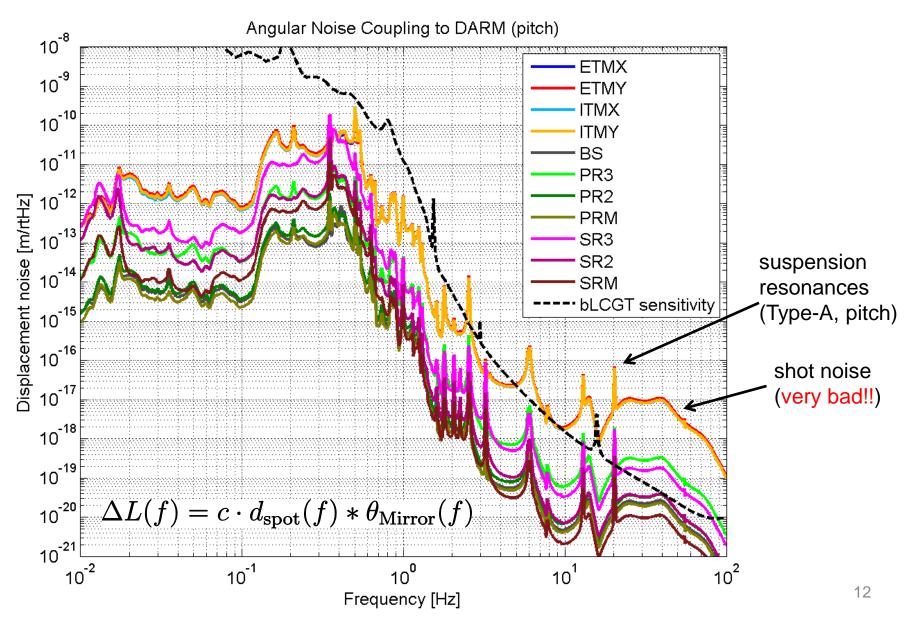
sensing ports WFS Sensing Matrix [W/mrad/sqrt(2/pi)]													
(Gouy p	hases at	POP A:	70.6, PO	P B:-72.9	REFL A	.:-89.9, R	EFL B:-C	.1, AS A	:89.5, AS	B:73.1,	TR A:64.		
\checkmark	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM	← control DOF	
REFL_A2I	163.97	19.39	0.02	0.01	-4.76	-13.95	-2.03	-2.74	0.00	0.00	0.00		
TRX_ADC	- 0.03	10.88	0.03	10.88	0.00	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00	boxoly discovering d	
AS_A1Q	- 0.00	0.00	1.51	0.25	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	barely diagonalized	
TRY_ADC	- 0.03	10.88	-0.03	-10.88	-0.01	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00	reconstruct error signal for each DOF	
POP_B1Q	0.00	-0.00	0.03	-0.04	0.03	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	by combining signal from sensing ports	
REFL_BDC	-46.95	-40.43	-0.04	0.03	-20.30	-57.30	-6.63	-2.18	-0.19	-0.02	-0.01	(input matrix)	
POP_ADC	- 0.03	0.24	0.00	0.00	0.15	0.43	-2.28	-1.14	0.00	0.00	0.00		
REFL_B1I	- 0.27	-1.81	-0.00	-0.00	-0.88	-2.88	-0.34	5.96	-0.38	-0.05	-0.02		
POP_B1I	0.00	-0.09	0.00	-0.00	0.02	-0.05	-0.01	0.00	-0.11	-0.01	-0.01		
AS_BDC	0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.00		
										7			

small WFS signal, so no WFS control for SR2~

3. Residual angular motion



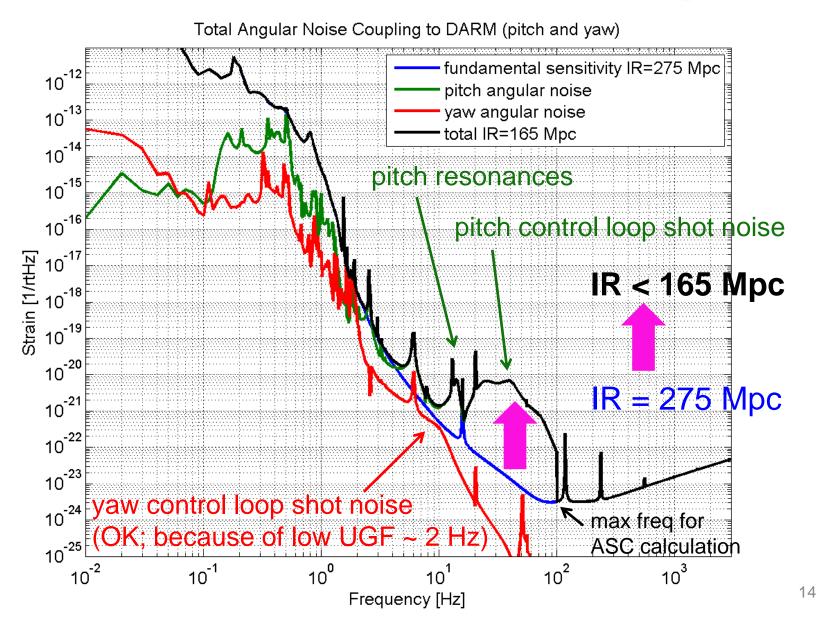
pitch


positive g-factor

positive g-factor pitch

4. Beam spot motion

5. A2DARM coupling



6. Pitch and yaw

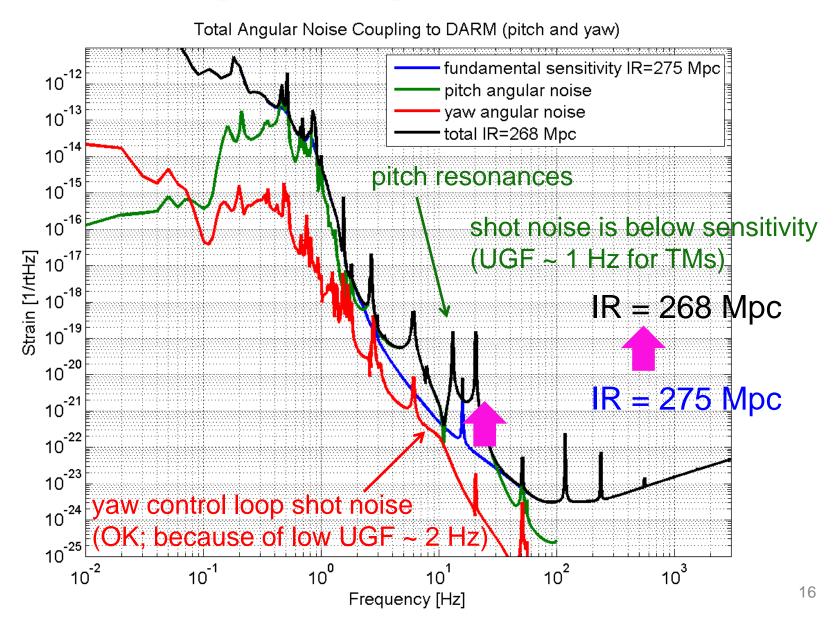
- plots above are for pitch control loop
- do the same thing for yaw

 \rightarrow total A2DARM coupling

Total A2DARM coupling

How to reduce A2DARM?

- make pitch SOFT mode stable
 - increase mechanical restoring torque of Type-A(TM) pitch by factor of ~20%
 - negative g-factor
 smaller radiation pressure anti-spring
 → we can lower UGF of TM control
 smaller beam spot motion


unstable if;

radiation pressure anti-spring(SOFT mode)

mechanical restoring torque

current default design is positive g (ITM: flat, ETM: R=7 km) negative g candidate is ITM: R=1.5 km, ETM: R=1.6 km 15

If negative g-factor.....

Reducing A2DARM even more

- employ local damping particularly, pitch 0.5 Hz peak (difficult to damp by WFS) passive + active
- refine suspension design somehow move / damp pitch ~ 20Hz peaks

 \rightarrow work in progress

Future plans

- include strategic local damping cooperation with vibration isolation group
- geometrical study of beam in IFO for better DOF selection
- upgrade WFS tool
 - compare and check with aLIGO calculation
 - adopt AdVirgo method
 - include more noise
 AS shot noise, seismic noise on QPD, WFS
 broadband noise

currently, only mirror seismic and QPD shot noise

Summary

- developed a tool for simulating / designing ASC
- evaluated A2DARM for current design IR will be < 165Mpc
- proposed negative g-factor solution
- we need better suspension (pitch)
- lots of things to do to make this tool more relevant to reality!