Interface Control Document

LCGT F2F meeting @ ICRR Aug. 2011

Tokyo Inst of Technology
Kentaro Somiya

Contents of the talk

- Concept of interface control
- Prompt update system for ICD
- Allocation of tasks
- Trade-off study

Without the interface control...

- (1) Two people may think that the other guy will take care of a shared item.
- (2) Some items could belong to none of the subsystems.

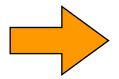
(3) Two people may assume different parameters for a shared item.

Importance of interface control

Interface Control Document of the LCGT Project

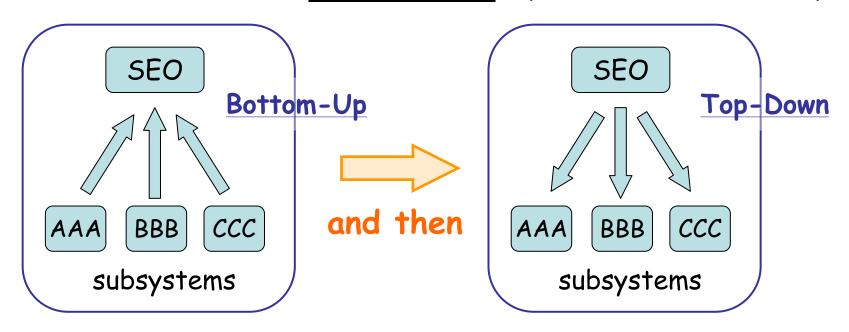
2010/4/19 (ver 1.23)

LCGT Project

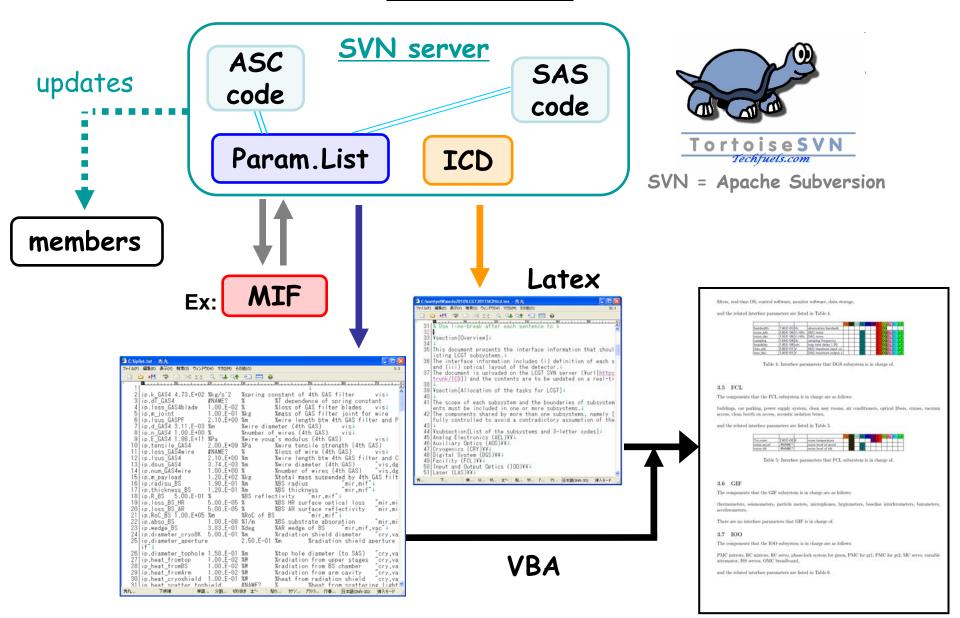

ICD: JGW-M0900018-v8

Role of ICD

- Define subsystems (components, tasks)
- Set requirements
- List up interface parameters


Problems of current ICD

- No consistency check
- Too many pages for prompt update

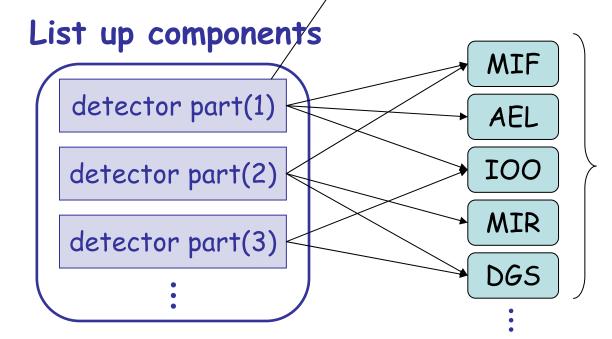

New ICD

New ICD (Interface Control Document)

- · Bottom-up method alone leads to the inconsistency
- · Top-down method alone may cause conflicts
- Both are necessary
- · The first part has been quite done in the old ICD

New ICD (Interface Control Document)

Allocation of tasks


Ex.)

2.6 Main interferometer and core optics

ITM (silica) [MIR], ETM (sapphire) [MIR], PR2 [MIR], SR2 [MIR], steering mirrors [AOS], PD for REFL (high/low) [AEL], PD for POX [AEL], PD for Y-trans [AEL], QPDs for AS (high/low) [AEL], lenses for AS WFS [MIF], CCDs for trans (X,Y) [MIF], CARM demodulator [AEL], MICH demodulator [AEL], digital system for MIF [DGS], network analyzer [MIF], TCS (if necessary) [AOS],

ETM (silica) [MIR],
BS [MIR],
PR3 [MIR],
SR3 [MIR],
pico-motors for steering mirrors [AOS],
PD for POP (high/low) [AEL],
PD for POY [AEL],
QPDs for REFL (high/low) [AEL],
lenses for REFL WFS [MIF],
oplev for core optics [AOS],
CCDs for REFL [MIF],
DARM demodulator (RF) [AEL],
SRCL demodulator [AEL],
in-vacuum mirror cleaning tools [AOS],
optical spectrum analyzer [MIF],

ITM (sapphire) [MIR],
PRM [MIR],
SRM [MIR],
ASp pickoff mirror [MIR],
beam dampers [AOS],
PD for ASp (high/low) [AEL],
PD for X-trans [AEL],
QPDs for POP (high/low) [AEL],
lenses for POP WFS [MIF],
holes on baffles [AOS],
attenuation mirror for REFL [MIF],
PRCL demodulator [AEL],
CARM servo [MIF],
oscilloscopes [MIF],
acoustic isolation boxes [FCL],

Subsystems that is in charge of each component

Allocation of tasks

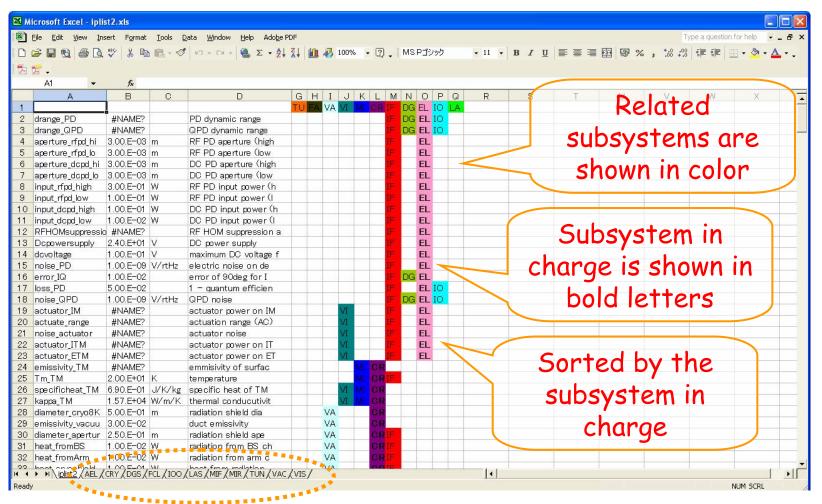
- List-up process will be done by SEO (top-down; in order to avoid missing objects)
- Allocation of each component will be done by SEO + subsystems (mostly bottom-up)
- A subsystem that determines the requirement of each component (not the one that purchases the component)
- For example...
 AOS is in charge of the oplev, while AEL buys the QPDs and IOO buys the steering mirrors.

Parameter list

```
៕ C:\iplist.txt - 秀丸
ファイル(F) 編集(E) 表示(V) 検索(S) ウィンドウ(W) マクロ(M) その他(O)
                          Q QJ Q1 🔚 🖂
      ip.k GAS4 =4.73.E+02
                                      %kg/s^2
                                                 %spring constant of 4th GAS filter
      ip.dT GAS4
                           =TBD
                                                 %T dependence of spring constant
                                                                                            vis,cry,mif↓
      ip.loss GAS4blade
                           =1.00.E-02
                                                            %loss of GAS filter blades
      ip.m joint
                           =1.00.E-01
                                                           %mass of GAS filter joint for wire
                                                           %wire length btw 4th GAS filter and PF
      ip.Isus GASPF
                           =2.10.E+00
      ip.d_GA\overline{S}4 =3.11.E-03
                                                 %wire diameter (4th GAS)
      ip.n_GAS4 =1.00.E+00
                                                 %number of wires (4th GAS)
     |ip.E GAS4 =1.86.E+11
                                                 %wire youg's modulus (4th GAS)
                                                            %wire tensile strength (4th GAS)
  10|ip.tensile GAS4
                           =2.00.E+09
  11 lin Lose CAS/wird
                                                                   タケジャンプ。 アウトライン... 行番号... 日本語(Shift-JIS)
```

Name (tab) =value (tab) %unit (tab) %description (tab) AAA,BBB,CCC

This part can be directly used with a Matlab code.


AAA: subsystem in charge BBB+: related subsystems

- The interface parameters have been discussed with all the subsystem chiefs (parameter meetings)
- Once a parameter is changed, the list will be updated and the chief will be informed via SVN

Parameter list

VBA transforms the list to the table below.

(Visual Basic Application)

Create tables with each subsystem in charge (used in ICD)

Discussions in the parameter meetings

- Mirror spec (wedge, RoC error, absorption)
- Coating mechanical loss
- · MIF control; UGF and feedforward gain
- · Intermediate mass temperature
- Shield aperture and point scattering
- · OMC design

... etc.

Some of them are not specified yet.

Optical layout

- · Taken care separately from the parameter list
- · Layout meeting: conducted by Miyoki (SEO)
- 4 meetings (1/25, 6/16, 7/4, 7/19)

How to proceed hereafter

- · Cross-check the component list (SEO)
- Subsystem study meetings (led by Ando)
- · Discuss the allocation with subsystems
- · Complete the parameter list
- Add the optical layout
- Complete the ICD
- · Add the link to Matlab codes