

Status report from digital system subgroup

2011/8/4(Thu) LCGT f2f meeting Osamu Miyakawa, ICRR

Summary of work from last f2f

- As of the last f2f meeting, visited to Caltech and constructed a stand alone system, and looked at a CDS test bench for aLIGO at LHO
- Re-construction of 2-3 standalone systems using Gentoo Linux distribution with RT patch based on vanilla Linux kernel and Ubuntu workstation benches
 - Currently we are working on making circuits for distribution
- Construction of a small network test bench consisting of 1 master PC and 2 slave RT PCs, connected by two types of Reflective memory network and DAQ network using openmx technology
- Timing system using GPS synchronizing multiple PCs with 1PPS signal.

Concept of the digital system

Digital system will be a critical technology for commissioning/noise hunting

- Provides a very flexible human interface for a very complicated DOFs of the interferometer.
- Good solution to treat huge numbers of signals in Large scale interferometer
- Provides many useful functions as sensing, filtering,
 Matrices, controls, monitoring, switching etc.
- Multiple people can work at a time

Overview of digital system

- Real Time Front-end PC
- Workstation, Diagnosis software
- ADC/DAC/BO in IO chassis, AA/AI
- DAQ/RFM/timing network

- Control, monitor, switch
- Auto lock, auto alignment
- · Commissioning, noise hunting
- Diagnosis, tuning, calibration
- Operation, observation

Schedule

Before LCGT funded

~FY2010: Development of prototype system at/using CLIO

After LCGT funded

FY2011: Delivering stand alone system to subgroups

Small Test bench of network of digital systems

FY2012: Test operation system as whole network at Kamioka building

FY2013~: Installation of full digital system into mine

FY		2010	2011	2012	2013	2014	2015	2016
Quarter		1Q 2Q 3Q 4Q	1Q 2Q 3Q 4G	1Q 2Q 3Q 4Q				
Main Phase		Design	Tur	nnel	Vacuum	FPMI	RSE	Cryo
Prototype test	CLIO operation							
	Data analysys test							
Standalone system for subsystems	Hard/software setup							
	Circuit							
	Delivery							
Article test	Small network							
	Large network sytem							
Full system installarion	LNS->full system							
	Software setup							
	Cuircuits							
	Newtwork							
Upgrage	RSE							
	Cryo							

Prototype 1: test in CLIO ~2010

- To establish the first test of aLIGO type digital system
 - Obtaining equipment in Japan like ADC/DAC/BO, IO chassis...
 - Related analog circuits like AA/AI, WF/DWF
- Lock acquisition
 - linearizing error signal
 - normalizing power
- Calibration process on DTT
 - sensitivity monitor
- Noise performance
 - Switching WF/DWF by BO
- Auto alignment
- Application for other R&D experiment

1 day Engineering run is planned using CLIO in this fall for development online analysis software

Prototype 2: Standalone system for subsystems

5sets of stand alone digital system will be delivered to subgroups in FY2011

- 1. Real time control computer as front-end
- 2. Client workstation PC with software setup
- 3. PCIe I/O chassis for ADC/DAC/BO modules
- Timing slave board
- 5. ADC, DAC, Binary Output
- 6. Anti Alias/Anti imaging filters
- good chance for subgroups to use a digital system before the commissioning of LCGT
- Network diagram: JGW-D1100404
- Additional distribution:
 - Tsubono group (HDD only)
 - NAO for data analysis

Connecting subsystems into digital system

Troubles in Standalone system

1. DAC trouble

- Could not produce output signal
- Fixed by making multiple models in one PC which have a relationship of master and slave
- 2. Unstable connection with IO chassis using HIB
 - GEN1 (HIB2) or GEN2 (HIB25)?
 - LIGO fixed using GEN1 card, but not for ours
 - Cable length?
 - Not fixed yet

- Manufactured by P-ban through Analog circuit group, thanks Moriwakisan!
- 10 LIGO designed AA/AI boards ordered
 - 6 layers circuit board
 - auto mounted
 - Soldered
- Needs:
 - power supply board
 - Interface boards
 - 1U box

Standalone system to network system

- Standalone digital system is not so difficult:
 - No time loss in local memory
 - GW data locally stored
 - No timing required
- Real time control using multiple PCs will be much more difficult for the speed of network with bandwidth and delay
 - 1. Control signal: small amount of data, but only minimum delay acceptable for real time control
 - --> Reflective memory
 - 2. GW data: not so strict for speed as control signal but only tiny delay acceptable for time stamp, and very wide bandwidth for Huge amount from many RT PCs
 - --> Myrinet or Open Myrinet
 - 3. Synchronization for all ADC/DAC and all PCs
 - --> Master/Slave style timing system

First Article test

1. Small network test in FY2011

- Network among 1 master and 2 slaves
- GE RFM, Dolphin RFM, DAQ, timing network

2. Full network test in FY2012

- ~8 network PCs
 - 1 boot/nfs server
 - 1 data concentrator server
 - 2 nds servers for redundancy
 - 2 frame writers for redundancy
 - 2 gateways for redundancy
- 2 data storage devices for redundancy
- ~7 RT front-end PCs
- ~5 Workstations
- Multiple RFM/Dolphin/DAQ/general network hubs
- Redundancy test

Small network test at Kashiwa campus

- Man power: Joseph Betswiezer (Caltech post-doc, 40m's maim CDSer) and Osamu Miyakawa
 - Lecture for students of Tsubono group for standalone system

What we did are:

- 1. 1 master PC as a boot server, and PXE booted 2 slave PCs
- 2. Timing system
 - GPS antenna and receiver
 - LIGO Master/slave timing system
 - 1PPS synchronization into each ADC card on 2 slaves
 - IRIG-B signal is necessary for master synchronization in the future
- 3. GE Reflective memory hub using fiber cable connection between 2 slaves
- 4. Dolphin reflective memory hub using metal cable connection between 2 slaves
- 5. DAQ network with open-mx protocol
 - Myrinet card is necessary for data concentrator in future

Timing Network

Network design

Network design

First Article test

1. Small network test in FY2011

- Network among 1 master and 2 slaves
- RFM, DAQ, timing network

2. Full network test in FY2012

- ~8 network PCs
 - 1 boot/nfs server
 - 1 data concentrator server
 - 2 nds servers for redundancy
 - 2 frame writers for redundancy
 - 2 gateways for redundancy
- 2 data storage devices for redundancy
- ~7 RT front-end PCs
- ~5 Workstations
- Multiple RFM/Dolphin/DAQ/general network hubs
- Redundancy test

- Cyber security
 - Needs professional level network security system
- Redundancy
- Huge number of channels
 - How do we check huge number of channels for analog and digital to avoid troubles after installed
- It is important to understand whole digital system from inside and it is also important to keep communicating with LIGO CDS group.