# Special working group for LCGT Roadmap



#### Masaki Ando

(Department of Physics, Kyoto University)

On behalf of LCGT special working group

# **LCGT Roadmap Special working group**

#### Roadmap special working group

- Ad-hoc working group to make recommendation on the LCGT commissioning schedule.
- Open for all collaborators, nominally ~20 participants.
- Brainstorm-type meeting with free discussions.
- 14 meetings since Oct. 25, 2010.

#### **Original Scope**

 To recommend the roadmap to realize bLCGT (after iLCGT), including design, research, development, performance test, installation, and shakedown procedures.



After the external review and establishment of the system engineering office.

#### Current Scope,

- To recommend the roadmap to realize LCGT.
- Summarize the master schedule, considering basic concepts and schedule constrains.

#### **Task flow**

#### Working group task flow

- Collect information

Project: definition of LCGT, constrains form budget and schedule

Science: observation targets

Technical feasibility:

technology readiness, development plan, risk factors

- Decide basic policies
- Determine a master schedule of LCGT construction
- Break down to each subsystem schedule ... several iteration ....
- Summarize a recommendation document

# Target, constraint, and basic policies

# **Target and constraints**

#### LCGT baseline concept

Purpose: detection of gravitational-wave signal

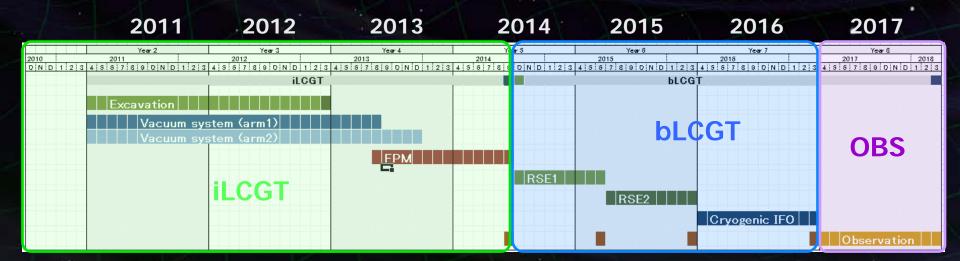
⇒ Primary target --- NS binary inspiral 3km cryogenic RSE interferometer at underground site

#### Constraints

- Financial constraints:
  - First 3-year construction has been approved.
  - Excavation cost has been approved.
- Uncertainties in the excavation schedule.

# **Basic policies**

#### **Basic policies**

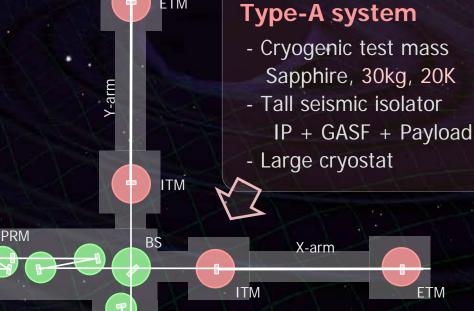

- First priority in schedule is to achieve the bLCGT observation.

  Additional tasks should be minimized.
- Tight schedule to start observation run in 2017.
  - Intensive preparations are required before installation, for efficient commissioning and for reduction of technical and schedule risks.
  - All the R&Ds should be completed before installation. LCGT should not be used as a R&D facility.
- LCGT is a big project with responsibility. So best effort should be made to maximize scientific outcomes and to keep schedule.
- First km-scale interferometer leaded by the Japanese group.
  - → Step-by-step construction and commissioning.

# Master Schedule

#### **Master Schedule**

- •iLCGT: Stable operation with a large-scale IFO (2010.10 2014.9)
  - → 3km FPM interferometer at room temperature, with simplified vibration isolation system
    - ~1 month (TBD) observation run
- •bLCGT: Operation with the final configuration (2014.10 2017.3)
  - → RSE, upgraded VIS, cryogenic operation
- •OBS : Long-term observation and detector tuning (2017.4 -)




# **bLCGT** configuration

ETM

#### **bLCGT** configuration

- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling



#### Type-C system



- Mode cleaner Silica, 1kg, 290K

MC

- Stack + Payload

#### Type-B system



- IP + GASF + Payload
- Stack for aux. optics



# **Commissioning Plan**

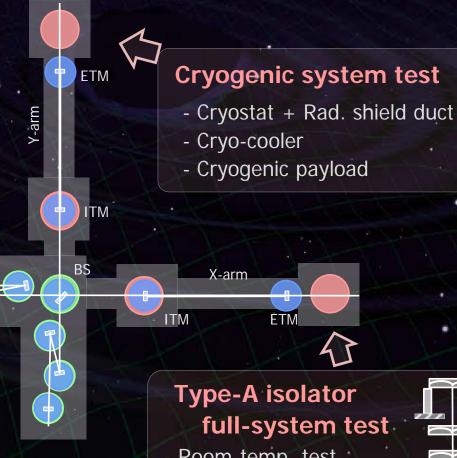
#### LCGT schedule is extremely tight.

→ We should reduce the amount of the on-site commissioning tasks. Intensive tests are required for each sub-system before installation. Avoid additional tasks only for intermediate steps. Basic policy 'Do not use LCGT as an R&D facility'.

#### ·It is hard to test the full cryogenic test-mass system.

- Type-A isolator test requires a large facility and a quite site.
- Cryogenic system requires long test time for a cool-down and warm-up cycle.
  - → Hard to avoid technical and schedule risks.




#### Roadmap to solve these concerns.

- Install ETMs in front of the original positions (by ~30 m) for the room-temp. interferometer commissioning.
- Full test of the real VIS and cryogenic system at the end rooms.
- Half-cryogenic configuration step before the final bLCGT configuration.

# iLCGT commissioning

#### **iLCGT** configuration

- Room-temp. test masses suspended by Type-C' isolators
- 2.97 km arm cavities
- Fabry-Perot Michelson
- Low laser power





#### Type-C' system

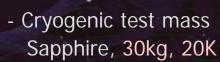
 Test mass and Core optics (BS, FM,..)
 Silica, 10kg, 290K

Dummy Plate

Seismic isolatorStack + Type-B Payload

- Room-temp. test Sapphire (?), 30kg, 290K
- Tall seismic isolator IP + GASF + Payload



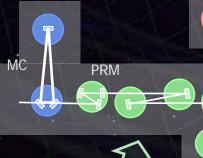

# **bLCGT** commissioning (1)

#### **bLCGT (RSE1, RSE2)**

- Room-temp. test masses
- 2.97 km arm cavities
- RSE with power recycling
- VIS upgrade for core optics



# Cryogenic test mass full system test




- Type-A isolator

X-arm

- Cryostat + cryo-cooler







#### Type-B system

- Core optics (BS, RM ,...) Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics



ITM

BS



#### Type-C' system

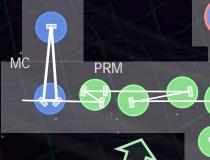
- Test mass Silica, 10kg, 290K
- Seismic isolatorStack + Type-B Payload

# **bLCGT** commissioning (2)

#### bLCGT (Half cryogenic)

- ETM: Cryogenic (20K)
- ITM: Room temperature
- 3 km arm cavities
- RSE with power recycling




#### Cryogenic test mass

- Cryogenic test mass Sapphire, 30kg, 20K
- Type-A isolator

X-arm

- Cryostat + cryo-cooler







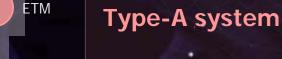
#### Type-B system

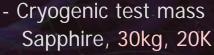
- Core optics (BS, RM,...) Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics



#### Type-C' system

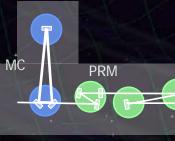
- Test mass Silica, 10kg, 290K
- Seismic isolator Stack + Type-B Payload


# **bLCGT** configuration


ITM

BS

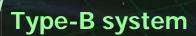
#### **bLCGT** configuration


- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling





Tall seismic isolatorIP + GASF + Payload



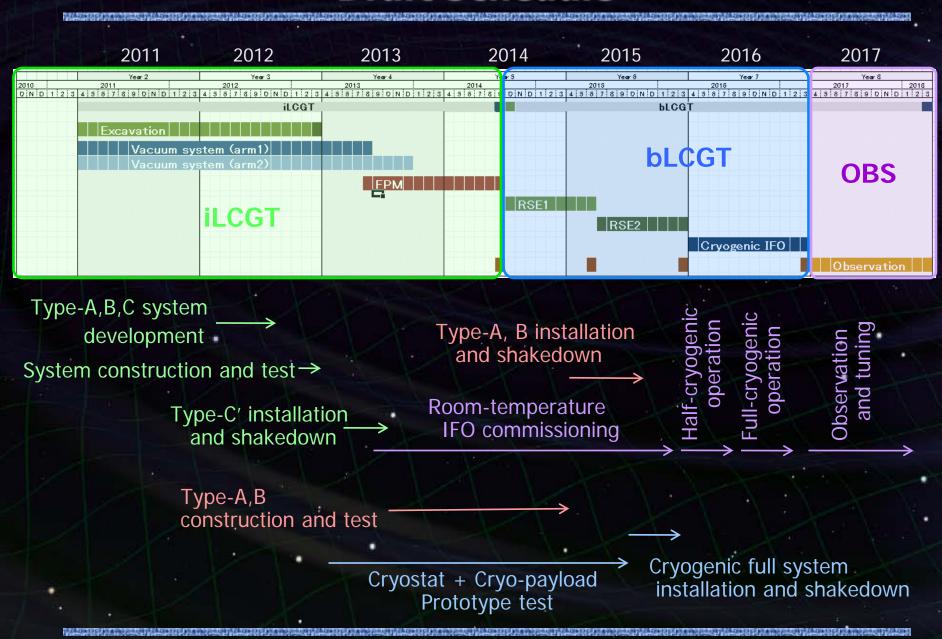





#### Type-C system

- - Mode cleaner Silica, 1kg, 290K
  - Stack + Payload




X-arm

 $\mathsf{ITM}$ 

- Core optics (BS, RM ,...) Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics



#### **Draft Schedule**



#### **Observation runs**

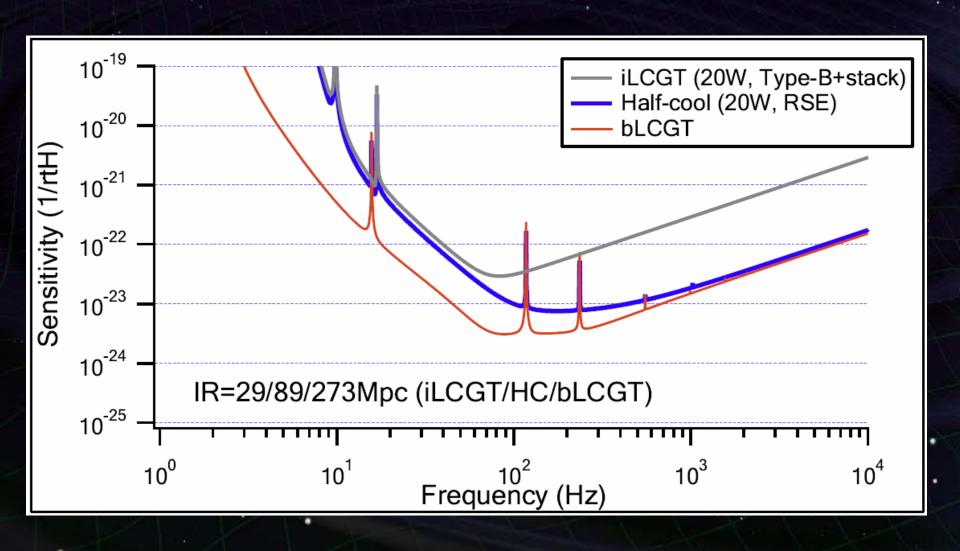
#### Step-by-step commissioning plan

- → Observation or engineering run is planed at each step.
  - Test of full detector system including a data-processing.
  - Detector characterization on long-term stability.
  - Development of data-analysis pipelines.

| Observable range for NS binary insp | spiral Fundamental noise limit |
|-------------------------------------|--------------------------------|
|                                     |                                |

iLCGT 29 Mpc FPM, Low power, 10kg Silica, Temp: 300K

Half cryogenic 89 Mpc RSE, Low power, 10kg Silica, Temp: 20K + 300K


Final bLCGT 273 Mpc RSE, High power, 30kg Sapphire, Temp: 20K

(Source at optimal direction, Threshold: SNR 8)

#### Tight schedule

- First priority is to operate LCGT with the final configuration.
- Refrain from spending too much time for the intermediate runs.

# Sensitivity



# Discussions LCGT Program Advisory Board (June 21 2011, Kashiwa, Chiba)

#### **Before the External Review**

#### Plan before the external review

- iLCGT
  - Installation of Type-A isolators for the test masses for the room-temp. interferometer operation.
  - Crumping of the isolator above the payload.

#### Early phase in bLCGT

- Installation of RSE and upgrade of isolators.
- Operation of the room-temp. interferometer as a full system.

#### Latter phase in bLCGT

- Replacement of the test-mass payload and vacuum system to the cryogenic payload and cryostat.
- Installation of the radiation shield ducts.
- Operation of the cryogenic interferometer as a full system.

### **External Review Comments**

#### Recommendations by the external review committee

- Use Type-B system in the iLCGT room-temp. operation
  - Reduce technical risks using the experiences by TAMA-SAS.
  - Earlier start of commissioning.
- Avoid replacement of isolation systems after installation
  - Reduce the additional tasks.
  - Shorten the total commissioning time to realize the final LCGT.
- Abandon the two-layer structure
  - Big hole will be convenient for the possible future upgrades.
  - Risk management for vibration isolation system.
- Early start of full-system test for the Type-B isolator
  - Gain technical feasibility.
- Consider about observation run with the room-temp. IFO.
- Consider about a half cryogenic step before the full configuration.

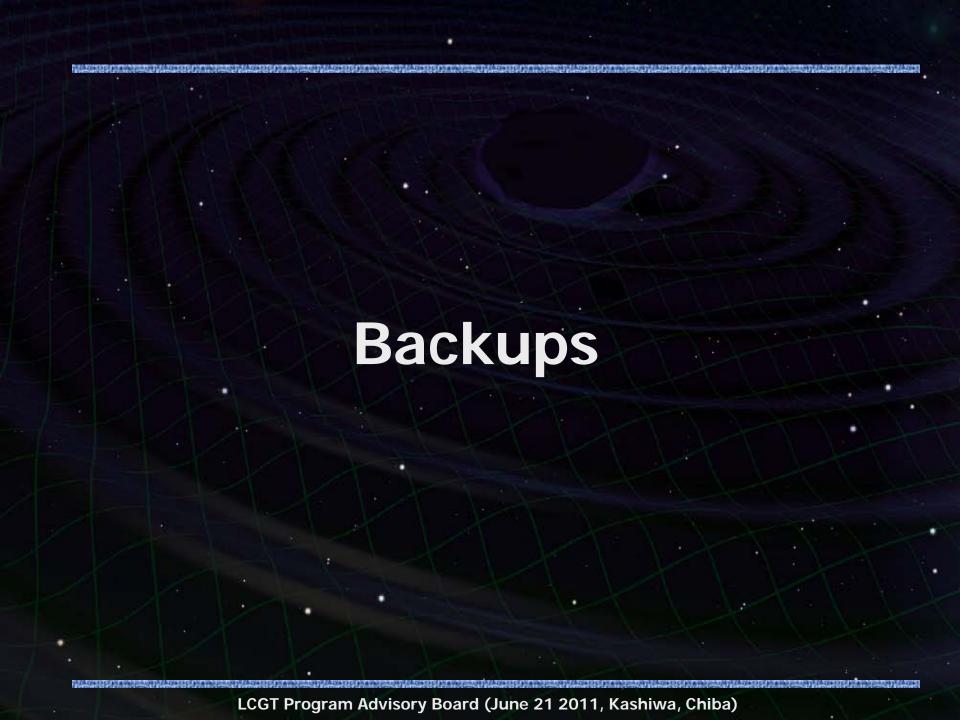
#### **Current Plan**

#### Advantages in the current plan

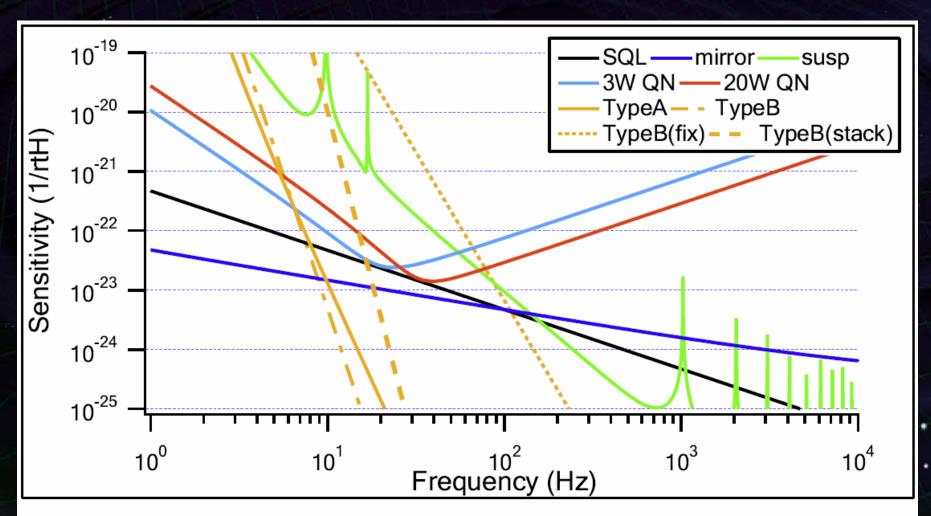
- Earlier start of the interferometer commissioning
  - Type-C': a simple isolation system based on the experiences in TAMA.
  - Replacement after installation is minimized.
- Full-system test of the isolator and cryogenic system
  - Real-system test at the site in parallel to the IFO commissioning.
  - Reduction of the technical risks and compression of the total schedule.
  - Smooth upgrade to the half-cryogenic configuration.

#### **Options**

- Earlier full system test of the Type-B isolator at the site
  - Test using some of the core optics.
  - Reduce the technical jump from the Type-C' isolator.
  - Gain experiences for the Type-A isolator.
- Flexibilities in the commissioning plan
  - More challenging plans depending on the development status.
  - Any ideas to accelerate the schedule.


# **Summary**

#### Roadmap special working group


- Summarized information on the project target and constraints.
- Determined the basic policies.
- Made a master schedule for the LCGT commissioning.

#### **Next steps**

- Will complete the working group after summarizing a recommendation document.
- Detailed discussions on the roadmap will be led by the SEO.



# Sensitivity



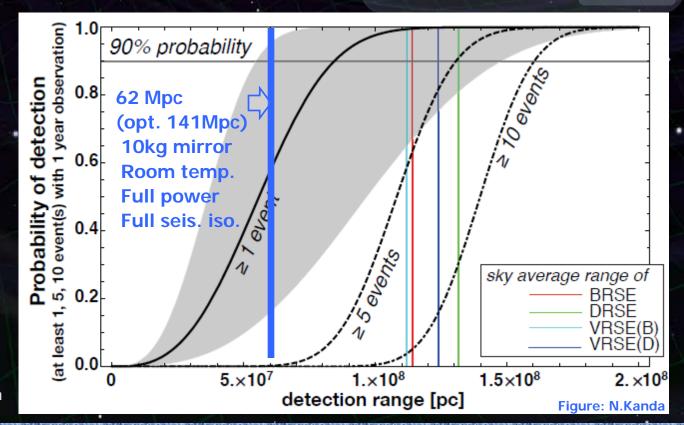
IR = 29/17Mpc (TypeA/B/Bstack, 20W/3W), 21/11Mpc (TypeB-fix, 20W/3W)

# **Detection probability**

Detection probability in one-year observation

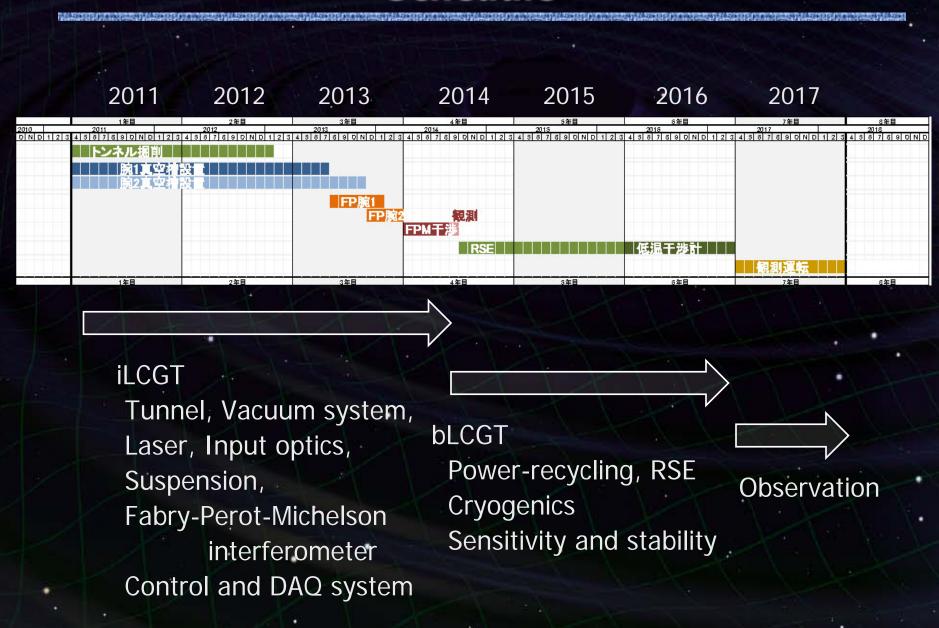


Success probability of the LCGT project


IR DP

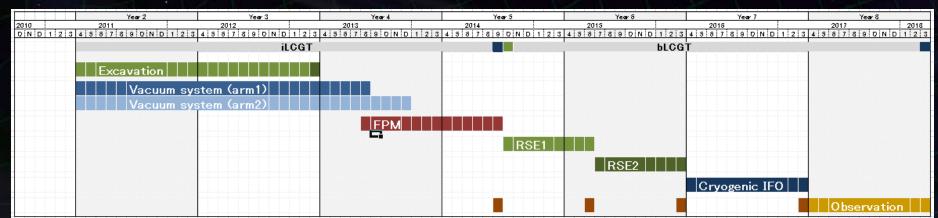
BRSE 114 Mpc 99.6 %

VRSE-B 112 Mpc 99.4 %


VRSE-D 123 Mpc 99.9 %

DRSE 132 Mpc 99.9 %




Assume Poisson distribution

#### **Schedule**



#### **Master Schedule**



