LCGT and CLIO

Masaki Ando

(Department of Physics, Kyoto University)

On behalf of the CLIO team and the LCGT Collaboration

Materials by T.Uchiyama, S.Miyoki, O.Miyakawa, A.Araya

Introduction : LCGT CLIO Earthquake LCGT Schedule and Status Summary

LCGT (Large-scale Cryogenic Gravitational-wave Telescope) Next-generation GW detector in Japan

Cryogenic interferometer Mirror temperature: 20K

Underground site Kamioka mine, 1000m underground

LCGT project was selected by the 'Facility for the advanced researches' program of MEXT (June 2010).

Construction cost is partially approved: 9.8 BYen for first 3-year construction. (Original request: 15.5 BYen for 7 years.)

In addition, request for excavation cost has been approved.

Baseline design is not changed: Requesting the additional cost for full construction of LCGT.

Sensitivity Curve

Comparable with aLIGO Ad.VIRGO → Global observation network

Developments for LCGT

High freq. : Shot noise

- Optical config. of RSE
- High-power laser source
- Low-loss optics

Mid. freq. : Thermal noise

- Cryogenic
- Sapphire
- Suspension design

Low freq. : Seismic noise

Quiet site of Kamioka
Seismic attenuator

 Prototypes (NAOJ, Caltech) Detector design \rightarrow Talk by K.Somiya 100-W laser (Kashiwa) \rightarrow Talk by N.Ohmae •CLIO (ICRR, Kamioka) \rightarrow This talk Cryostat design (KEK) \rightarrow Talk by Y.Sakakibara and N.Kimura •SAS in TAMA300 (NAOJ) Attenuator design \rightarrow Talk by R.DeSalvo

Developments for LCGT

High freq. : Shot noise

- Optical config. of RSE.
- High-power laser source
- Low-loss optics

Mid. freq. : Thermal noise

- Cryogenic
- Sapphire
- Suspension design

Low freq. : Seismic noise

Quiet site of Kamioka
Seismic attenuator

 Prototypes (NAOJ, Caltech) Detector design \rightarrow Talk by K.Somiya 100-W laser (Kashiwa) \rightarrow Talk by N.Ohmae CLIO (ICRR, Kamioka) \rightarrow This talk Cryostat design (KEK) \rightarrow Talk by Y.Sakakibara and N.Kimura SAS in TAMA300 (NAOJ) Attenuator design \rightarrow Talk by R.DeSalvo

CLIO

(Cryogenic Laser Interferometer Observatory)

Most of the materials were prepared by ...S. Miyoki, T. Uchiyama, O.Miyakawa

CLIO

Locked-Fabry-Perot interferometer

Cryogenic Sapphire TM, underground, baseline length of 100m

CLIO site

Same site as LCGT: Kamioka underground site

•220km away from Tokyo

- •1000m underground from the top of the mountain. (Near Super Kamiokande)
- •360m altitude

Hard rock of Hida gneiss (5 [km/sec] sound speed)

CLIO environment (1/2)

Stable environment for long-term operation Small seismic disturbance for low-freq. sensitivity

Seismic disturbance

Kamioka underground site (~1000km underground) Lower than TAMA300 site by 2-3 orders

Temperature

Temp. fluctuation < 0.2 degree for about 2 days

CLIO environment (2/2)

Long-term run at Kamioka site

LISM interferometer Baseline : 20m Suspended test masses Locked-FP config. No global alignment ctrl.

Observation period : 8/1-8/23, 9/3-9/17 (2002)
Total observation time : 862h
Total lock : 786h
Longest stretch of lock : 72h

Live rate : 91% (99.8% for last 1week)

CLIO Configuration

Two input test masses were cooled down

A sead new consistent and the states of the

Cryogenic Test-Mass

Test mass: Sapphire 2 kg, ϕ 100 x t60 mm Suspension: 3 stages at room-temp, 3 stages in cryostat Heat links for conductive cooling Low-vibration pulse-tube cryo-cooler

CLIO Cryogenic system

Cryostat, cryo-cooler and radiation shield

Temp monitors at 28 points

Double Shield Cryostat for Sapphire Mirrors (8K, 100K)

Transmission

STIP

Optical Bench for Suspensions at 300K

> Vacuum duct with 100K Radiation Shield 100m ArmSide

Thermal Switch with 40K GM refrigerator 40K 1-Stage Ultra Low Noise PT Refrigerator

4K 2-Stage Ultra Low Noise PT Refrigerator

CLIO Cryogenic Suspension

Triple pendulum in cryostat Sapphire test mass: 2 kg, \u00f6100 x t60 mm.

CLIO Test-Mass Cooling

Cooling time: 250 hours for the test-mass mirror. \rightarrow Cooled down to 16.4K

CLIO sensitivity

Sensitivity improvement with cryogenic operation → Seems to be Sapphire mirror thermo-elastic noise

CLIO digital system

LCGT will employ LIGO's digital system

Full-scale test of the control system at CLIO, based on MOU with LIGO laboratory

Client System

Main System

Differential drivers for ADC, DAC, and BO

Real time PC 4core x 2 Xeon CentOS 5.2 + Real time kernel Anti-aliasing and anti-imaging filters ADC, DAC, and Binary out adapters

ADC/DAC In Expansion Chassis

CLIO sensitivity with digital control

Earthquake on March 11th and Geophysics

Most of the materials were prepared by A. Araya, and R. Takahashi

•CLIO (Kamioka, Gifu ~500km away from hypocenter)
•Two people (Miyakawa, Saito) were working at CLIO site.
• did not noticed the shake.
•MC couldn't be kept locked more than a few seconds. This condition continues >1 hour.

 No serious damages: mirror, suspension, cryostat system, vacuum system.
 Small misalignment in suspended optics.

TAMA (Tokyo)

• TAMA (NAOJ, Tokyo ~ 400km away from hypocenter)

Serious damages in suspensions and mirrors. Three TMs fell onto breadboard.

Kamioka 100-m laser interferometer (in operation)

- 1. 1000-m underground
- 2. Frequency stabilized 532nm laser
 - ... resolution $\sim 10^{-13}$ in strain.

[1×10⁻⁸]

Observation of earth tides (100m IFO)

Determination of

- Tidal model (solid structure and ocean load)
- 2. Earth interior structure
- 3. Topographic effects

Earth's free oscillations of off Solomon earthquake (Apr.2, 2007, M8.1)

Determination of deep interior structure of the earth

Fringe output of the Kamioka laser strainmeter on Mar.11, 2011

So rapid fringe change ... now trying to retrieve strain from the fringe signal.

Plan

Two baseline-monitor interferometers (1.5km) along LCGT Targets

1. Baseline monitor for LCGT (Tides, microseisms, and earthquakes)

2. Fault-creep monitor for the Atotsu fault deformation...in the middle of Niigata-Kobe Tectonic Zone

3. Deep interior of Earth (Monitoring Earth's free oscillations)

Gneiss and Amphibolite …metamorphic hard rock

Geophysics Interferometers along LCGT

Schedule and Status

Master Schedule

•3 Major stages

 iLCGT (- 2014.9) Stable operation on large-scale IFO
 → 3km FPM interferometer at room temperature, with simplified vibration isolation system
 ~1 month (TBD) engineering run

 bLCGT (2014.10 – 2017.3) Observation run with final configuration

 → RSE, upgraded VIS, cryogenic operation
 OBS (2017.4 -) Long-term observation and detector tuning

Design Reviews

•Internal review (Dec. 2010 – Feb. 2011)

Review design, schedule, etc. of each subsystem by the subsystem leaders, Ando, and Kawamura
We had 15 internal reviews in three months

External review (2/28 - 3/4, summary report 3/12)

- Review design, schedule, etc. of each subsystem by external experts in the GW field
- The most important review for the technical aspects of LCGT

Special thanks to Reviewers: M.Zucker (chair), S.Ballmer, A.Bertolini, R.Flaminio, A.Freise, W.Johnson D.Ottaway, B.Willke

Program advisory board (June 21,22 at ICRR)

 Review management, progress, design, etc. of LCGT by senior (management) people in the GW and neighboring fields
 Reviewers: S.Whitcomb (Chair), M.Iye, D.McClelland, B.Mours, T.Nakamura, B.Schutz, G.Sanders, A.Yamamoto

Summary

Summary

LCGT : Project started

- Costs have been partially funded
- •Form global network with 2nd generation detectors
 - Aim to detect GW, and to open new astronomy
- LCGT will demonstrate 3rd generation detector techniques: cryogenics and underground

Design and R&D

Detailed design underway : internal and external reviews
TAMA and CLIO experiences

TAMA : GW observatory, TAMA-SAS
CLIO : Cryogenic interferometer, underground site

Prototype developments : SAS, Digital system, Cryostat

By the way...

LCGT will have a new Nickname soon...

Invite candidates from the public

 over 600 applications (already closed)

 Naming committee with 6 peoples

 Chair: Y. Ogawa (Novelist)

 Will be selected and announced in June.

