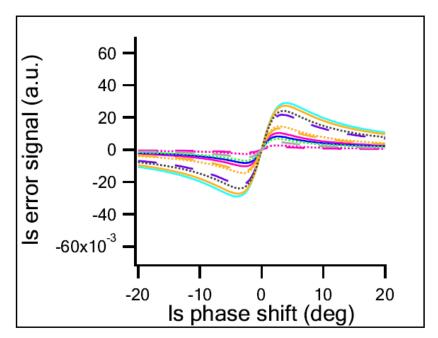
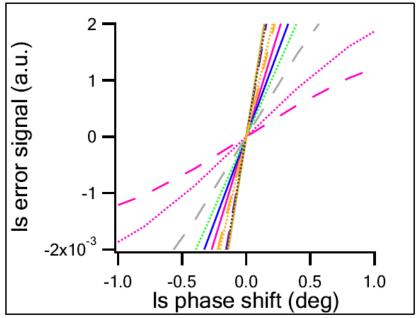
Down-selection of SB frequencies

- · MC長 < 33.4m
- 9MHz < f1 < f2=45MHz
- ・f1 SBがPR-SRCで共振、f2がPRCで共振
- ・f2 SBはMI完全反射
- · f1がf2の1/2や1/3ではない

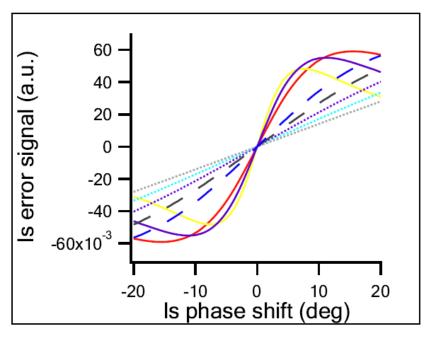

という条件を満たすf1は16種類(f2-f1と等しいものは除く) 共振の仕方が複数あるものもあり、全部合わせると25種類の 選択肢が存在する。

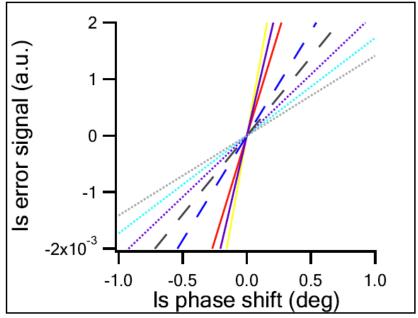

その中から、VRSE用にIsの線形領域が±3 deg程度をカバーしつつ、かつ0 deg付近でIsの傾きが急なものを選ぶのが、今回の計算の目的である。

※計算はFINESSEを使用。Is信号はREFLのf1単復調で取得。

Reso/Anti-reso case

中心部をズームしたもの

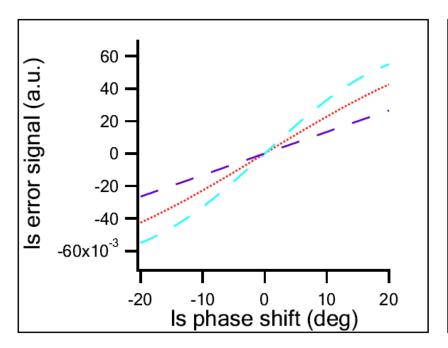


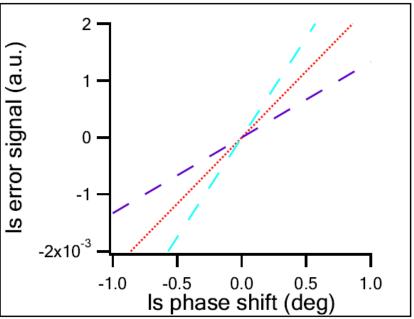


f1がPRC共振、SRC反共振でPR-SRCを共振するパターン。 線形領域の広さと信号の強さが比例している。 最良は水色実線:f1=20MHz, f2=45MHz である。 (f1/f2=4/9, MC=30m, Lp=Ls=89.9m)

Anti-reso/Reso case

中心部をズームしたもの

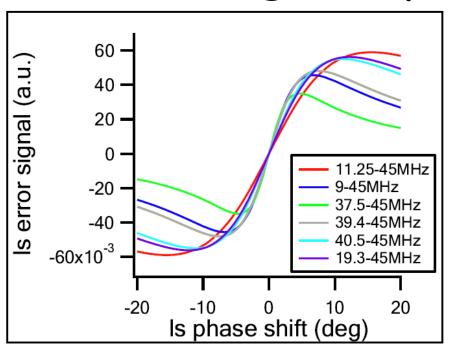




f1がPRC反共振、SRC共振でPR-SRCを共振するパターン。 線形領域の広さと信号の強さは反比例する。 赤色実線は現行の11.25MHz-45MHzであり、これより信号 が強いことが求められる。黄色実線は16.875MHz-45MHz。 (f1/f2=3/8, MC=26.6m, Lp=Ls=66.6m)

Reso/Reso case

中心部をズームしたもの


f1がPRCでもSRCでも共振してPR-SRCを共振するパターン。 f2がMI完全共振という条件下ではIs最大化条件から離れており、信号が弱い。※ここではPR-SRC透過率が5%以下のもの(2つ)は省いてある線形領域はどれも十分広い。

水色:40.5MHz-45MHz (MC=33m, Lp=67m, Ls=83m)

Figure of Merit

f1/f2	PRC/SRC	f1(MHz)	MC(m)	Lp(m)	Ls(m)	ls (BRSE)	Is (DRSE)	DRSE nonlinearity
5/6	anti/reso	37.5	20	70	70	0.00139	0.00195	-0.09766
2/7	anti/reso	~12.9	23	70	70	0.00399	0.00555	-0.09558
3/7	anti/reso	~19.3	23	70	70	0.00830	0.01134	-0.08992
2/8	anti/reso	11.25	27*	79.9	79.9	0.00309	0.00431	-0.09631
3/8	anti/reso	16.875	27	79.9	79.9	0.00663	0.00914	-0.09254
7/8	anti/reso	39.375	27	66.6	66.6	0.00078	0.00110	-0.09809
2/9	anti/reso	10	30	89.9	89.9	0.00245	0.00343	-0.09683
4/9	anti/reso	20	30	89.9	89.9	0.00878	0.01196	-0.08896
2/10	anti/reso	9	17	83.3	83.3	0.00199	0.00279	-0.09719
3/10	anti/reso	13.5	33	66.6	66.6	0.00439	0.00610	-0.09513
4/10	anti/reso	18	17	66.6	66.6	0.00733	0.01009	-0.09181
9/10	anti/reso	40.5	33	83.3	83.3	0.00050	0.00071	-0.09827
5/6	reso/anti	37.5	20	60	60	0.00370	0.00379	-0.00746
6/7	reso/anti	~38.6	23	70	70	0.00279	0.00282	-0.00382
2/8	reso/anti	11.25	27*	73.3	73.3	0.00737	0.00821	-0.03066
3/8	reso/anti	16.875	27	66.6	66.6	0.01135	0.01434	-0.06717
7/8	reso/anti	39.375	27	79.9	79.9	0.00216	0.00218	-0.00191
8/9	reso/anti	40	30	60	60	0.00173	0.00174	-0.00085
3/10	reso/anti	13.5	33	83.3	83.3	0.00946	0.01116	-0.04744
9/10	reso/anti	40.5	33	66.6	66.6	0.00141	0.00141	-0.00023
5/6	reso/reso	37.5	20	60	70	0.00133	0.00133	-0.00009
7/8	reso/reso	39.375	27	79.9	66.6	0.00233	0.00235	-0.00236
9/10	reso/reso	40.5	33	66.6	83.3	0.00350	0.00358	-0.00661

Larger-asymmetry case


```
dL=6.7m (2pi)
9-45MHz(2/10),Lp=Ls=74.9m
dL=10.0m (3pi)
37.5-45MHz(5/6),Lp=Ls=60.0m
39.375-45MHz(7/8),Lp=Ls=79.9m
40.5-45MHz(9/10),Lp=Ls=66.6m
dL=13.3m (4pi)
~19.3-45MHz (3/7), Lp=Ls=81.6m
```

- ・これまでアシンメトリ長はf2がMI完全反射する条件下で最短g03.3g(g=g)に固定していたが、この整数倍でもよい。
- ・ここまでの知見を生かし、f1がPRCで共振し、かつPR-SRCの 透過率が11.25-45MHzの場合より大きいもののみ計算する。
 - ※ dL=10m, f1/f2=5/6はいわゆる佐藤法とほぼ同じセットアップ
 - ※ 9-45MHzは麻生君が最近提案したセットアップ

Figure of Merit

f1/f2	asym(f2)	f1(MHz)	MC(m)	Lp(m)	Ls(m)	Is (BRSE)	Is (DRSE)	linearity (DRSE)
2/8	pi	11.25	27*	73.3	73.3	0.00737	0.00821	-0.03066
3/8	pi	16.875	27	66.6	66.6	0.01135	0.01434	-0.06717
2/10	2pi	9	33	74.9	74.9	0.01153	0.01481	-0.07196
5/6	3рі	37.5	20	60	60	0.01030	0.01383	-0.08474
7/8	3рі	39.375	27	79.9	79.9	0.01135	0.01433	-0.06718
9/10	3рі	40.5	33	66.6	66.6	0.00946	0.01117	-0.04746
3/7	4pi	~19.3	23	81.6	81.6	0.00890	0.01033	-0.04275

- ・アシンメトリが偶数 π のときはf1/f2が奇数/奇数、 奇数 π のときはf1/f2が奇数/偶数ならば、f1がPRC単体 で共振するという解が存在する(=線形領域が広い)
- ・Is信号についてはだいたいこのへんが最高値である
 - ※f1/f2=5/6のときはf1がMI完全透過し、lsも最大となるはずだが、 腕反射の位相シフトが影響したのか、3/8や2/10のときの値を超えられない
- Is最大は9MHzだが16.875MHz, 37.5MHz, 39.375MHz も信号量に大差はない。Asymmetry長、MC長、RC長などで どれを優先するかである。

Summary

- ・dL=3.3mの場合について可能性のあるほぼ全てのSB の組み合わせでIs信号量を計算した
- ・Is信号量はPR-SRC透過率に比例するのは予定通り
- ・f1がPRC単体で共振すると線形領域が広いことが判明
- 上記2点をふまえて、dL=6.7m,10m,13mの場合について PR-SRC透過率が現行案(11.25-45MHz)より高く、かつ f1がPRC単体で共振するものをリストアップし、比較した
- 16.875-45MHzの組み合わせだと現行案よりDRSEでの 非線形性は倍になるが、Is信号量がBRSEで54%増、 DRSEで75%増と効果的
- 他にもいくつかよい組み合わせがあり、アシンメトリ長、 MC長、RC長の違いを考慮して、最適なものを選択する