LCGT Main Interferometer Subsystem

Type B Review

2011/3/1@ICRR
Y. Aso on behalf of the LCGT MIF Working Group

```
Y. Aso (U-Tokyo, Chair)
    K. Somiya (Waseda)
    O. Miyakawa (ICRR)
        D. Tatsumi (NAOJ)
        T. Akutsu (NAOJ)
        K. Yamaoto (INFN)
    K. Agatsuma (NAOJ)
        M. Ando (Kyoto-U)
Y. Michimura (U-Tokyo)
        E. Nishida (NAOJ)
        C. Dan (NAOJ)
        K. Izumi (NAOJ)
```


Definition of the Subsystem

Main Interferometer

- No Hardware Manufacturing
- Design and Commissioning

Requirements

- Design an interferometer which can achieve the target sensitivity of bLCGT
- Switchable between BRSE and DRSE
- Robust operation
- Efficient commissioning

bLCGT Target Sensitivity

Interfaces with Other Subsystems

- Seismic noise
- Actuator dynamic range
- Local sensors

Vibration Isolation

- Sampling Frequencies
- ADC dynamic range
- Number of ports

Digital

Input/Output Optics

- Input beam parameters
- Modulation
- Laser noises
- OMC design
- Optical layout
- View ports

Vacuum

- Optical layout
- View ports
- Modulation freq.
- High speed servo

Analog Electronics

Contents

- Design of bLCGT Main Interferometer
- iLCGT design
- Activity plan during the tunnel excavation period
- Commissioning Schedule
- Risk Assessment
- Arm Cavity Design
- Angular Instability
- Parametric Instability
- Higher Order Spatial Modes
- Recycling Cavities
- Modulation Frequencies
- Length Sensing Schemes
- Folding
- Alignment Sensing
- Lock Acquisition Strategy
- Green laser pre-lock
- $3^{\text {rd }}$ Harmonics Demodulation
- Non-Resonant Sideband
- Optical Layout

Overview

Dual Recycled Fabry-Perot Michelson Interferometer in RSE mode.

Arm Cavity Design

Parameters

```
- Length: 3000.00 m
- Finesse: 1546
- g -factor : \(\mathrm{g} 1=1, \mathrm{~g} 2=0.572\)
```


Prefixed

Arm Cavity g-factor

- Spatial Mode Stability
- Beam Spot Size => Thermal Noise
- Angular Radiation Pressure Instability (Sidles-Sigg effect)
- Parametric Instability

Beam Spot Size

- Larger is Better for Thermal Noise
- 4.53cm@ETM => 0.6ppm diffraction loss
-3.43cm@ITM
- ITM coating is thinner than ETM
- No problem for Thermal Noise

Angular Instability

Sidles-Sigg Stiffness Matrix

Angular Optical Spring Constant k [$\mathrm{N}^{*} \mathrm{~m} / \mathrm{rad}$]

```
Large Beam (ITM=3.5cm, ETM=4.5 or 4.2cm)
4.4,-33.8 (g1 = 1, g2 = 0.572)
-4.6, 29.2 (g1 = -0.87, g2 = -0.6)
Small Beam (ITM=ETM=3.5cm}
5.0, -19.3 (g1 = g2 = 0.586)
-5.0,19.3 (g1 = g2 = - 0.586)
```


Optical angular spring constant Open Loop Gain: $G=k^{*} H$

Suspension TF

Yaw Torque -> Yaw Angle

This is H

Small beam, positive $(\mathrm{g} 1=\mathrm{g} 2=0.586)$
Stable Eigenmode

Small beam, negative (g1=g2=-0.586)

Large beam, negative ($\mathrm{g} 1=-0.87, \mathrm{~g} 2=-0.6$)
Stable Eigenmode

Large beam, positive $(\mathrm{g} 1=1, \mathrm{~g} 2=0.572)$

Stable Eigenmode

Parametric Instability

There are dangerous regions to avoid in the g-factor space

Negative g-factor

Curvature radius of a mirror [m]

The error requirement on the mirror ROC is stricter for the negative g-factor. by $\left(R_{\mathrm{p}} / R_{\mathrm{n}}\right)$

Negative g-factor: R ~ 1.9km Positive g-factor: $\mathrm{R}>7 \mathrm{~km}$

Negative g-factor is about 3.7 times more severe to ROC error in terms of PI
10m ROC errror for 1.9 km mirror -> 0.5% error
100m ROC errror for 7 km mirror -> 1.5\% error

g-factor Comparison

		Thermal Noise (IR) DRSE/BRSE [Mpc]	Optical Spring Unstable Freq	PI	ROC
(a)	$\begin{aligned} & \mathrm{g} 1=1 \\ & \mathrm{~g} 2=0.572 \end{aligned}$	275/246	2.6 Hz	Easy	ITM: >100km ETM: 7000 m
(b)	$\begin{aligned} & \mathrm{g} 1=-0.87 \\ & \mathrm{~g} 2=-0.6 \end{aligned}$	273/245	1.6 Hz	Severe	$\begin{aligned} & \text { ITM: } 1604 \mathrm{~m} \\ & \text { ETM: } 1875 \mathrm{~m} \end{aligned}$
(c)	$\begin{aligned} & \mathrm{g} 1=0.586 \\ & \mathrm{~g} 2=0.586 \end{aligned}$	266/241	2.2 Hz	Easy	ITM: 7246 m ETM: 7246 m
(d)	$\begin{aligned} & \mathrm{g} 1=-0.586 \\ & \mathrm{~g} 2=-0.586 \end{aligned}$	266/241	1.6 Hz	Severe	ITM: 1892m ETM: 1892 m

Arm Cavity Parameters

Length	3000.00 m	ETM ROC	7000 m
ITM Reflectivity	99.6%	ETM Beam Size	4.53 cm
ITM ROC	flat	g-factor	0.572
ITM Beam Size	3.43 cm	Round Trip Loss	$<100 \mathrm{ppm}$
ETM Reflectivity	$>99.9945 \%$	Finesse	1546

Higher Order Modes

- TEM00 resonance has to be isolated from higher order modes
- Higher order modes are large => Diffraction loss

Resonant curves of $L G(I, m)$ modes

Maximum HOM Power, ETM ROC error

Constraints

- Resonate RF sidebands in desired parts of the interferometer
- f1 sees both PRC and SRC
- f2 is only resonant in PRC
- MC length must not be too long (<30m)
- Modulation frequencies should not be too high
- PD and QPD response
- Modulation frequencies should not be too low
- RF laser noise, CARM UGF
- Michelson Average Length ~ 25m
- Cryogenic radiation shield $=20 \mathrm{~m}$ (BS <-> ITM)
- Schnupp asymmetry
- Not too large asymmetry
- Room for Folding

RF Sideband Resonant Conditions

- f1 sideband resonates in PRC-SRC
- f2 sideband resonates only in PRC
- f3 sideband does not enter the interferometer at all

Carrier
_I f1 sideband (PM 16.875MHz)
—— f2 sideband (PM 45MHz)
_f3 sideband (AM 56.25MHz)

RC Length Parameter Scan

There are many candidates of Lprc, Lsrc, Las which satisfy the resonant conditions

Parameter selection procedure

- Fix f2 to be 45 MHz
- Not too high, not too low
- Choose Las
- MICH reflectivity for f2 = 100\%
- Las $=3.3 \mathrm{~m}$ or 6.6 m
- Choose Lprc
- Resonate f2
- $65 \mathrm{~m}<\mathrm{Lprc}$ <85m
- Choose f1
- Integral (or half integral) multiple of the FSR of PRC
- MC length must not be too long (GCD of f1 and f2 is large enough)
- Choose Lsrc
- f1 is resonant in SRC <= anti-resonant in PRC
- f1 is anti-resonant in SRC <= resonant in PRC
- 65 m < Lsrc < 85m

Still there are many candidates

- Finesse of PRC-SRC for f1 varies depending on the MICH reflectivity to f1
- Choose one with wide enough resonance to allow detuning of SRC by offset

It is basically a matter of choosing f1 frequency
Figure of Merit
Nonlinearity＝2次の係数／1次の係数

f1／f2	PRC／SRC	f1（MHz）	$M C(m)$	Lp（m）	Ls（m）	Is（BRSE）	Is（DRSE）	linearity（DRSE）
5／6	anti／reso	37.5	20	70	70	0.00140	0.00061	－0．63183
2／7	anti／reso	~ 12.9	23	70	70	0.00403	0.00182	－0．59047
3／7	anti／reso	～19．3	23	70	70	0.00839	0.00416	－0．49474
2／8	anti／reso	11.25	27＊	79.9	79.9	0.00312	0.00139	－0．60448
3／8	anti／reso	16.875	27	79.9	79.9	0.00670	0.00319	－0．53623
7／8	anti／reso	39.375	27	66.6	66.6	0.00079	0.00034	－0．64081
2／9	anti／reso	10	30	89.9	89.9	0.00248	0.00109	－0．61486
4／9	anti／reso	20	30	89.9	89.9	0.00887	0.00447	－0．48042
2／10	anti／reso	9	17	83.3	83.3	0.00202	0.00088	－0．62215
3／10	anti／reso	13.5	33	66.6	66.6	0.00444	0.00202	－0．58195
4／10	anti／reso	18	17	66.6	66.6	0.00741	0.00357	－0．52424
9／10	anti／reso	40.5	33	83.3	83.3	0.00051	0.00022	－0．64465
5／6	reso／anti	37.5	20	60	60	0.00370	0.00360	－0．01577
6／7	reso／anti	～38．6	23	70	70	0.00279	0.00275	－0．00785
2／8	reso／anti	11.25	27＊	73.3	73.3	0.00739	0.00644	－0．07847
3／8	reso／anti	16.875	27	66.6	66.6	0.01143	0.00757	－0．25657
7／8	reso／anti	39.375	27	79.9	79.9	0.00216	0.00215	－0．00386
8／9	reso／anti	40	30	60	60	0.00173	0.00173	－0．00172
3／10	reso／anti	13.5	33	83.3	83.3	0.00950	0.00744	－0．14314
9／10	reso／anti	40.5	33	66.6	66.6	0.00141	0.00141	－0．00046
5／6	reso／reso	37.5	20	60	70	0.00133	0.00133	－0．00017
7／8	reso／reso	39.375	27	79.9	66.6	0.00233	0.00231	－0．00479
9／10	reso／reso	40.5	33	66.6	83.3	0.00350	0.00342	－0．01388

Final Candidates

	9 MHz	11.25 MHz	16.875 MHz
Lprc	74.95 m	73.28 m	66.62 m
Lsrc	74.95 m	73.28 m	66.62 m
Las	6.66 m	3.33 m	3.33 m
Lmc	33.3 m	26.65 m	26.65 m
f3	$13.5 \mathrm{MHz}(f 2 * 3 / 10)$	$61.9 \mathrm{MHz}\left(f 2^{*} 11 / 8\right)$	$56.3 \mathrm{MHz}\left(f 2^{\star} 10 / 8\right)$
DDM freq.	$22.5 \mathrm{MHz}, 31.5 \mathrm{MHz}$	$16.9 \mathrm{MHz}, 50.6 \mathrm{MHz}$	$11.25 \mathrm{MHz}, 39.4 \mathrm{MHz}$

Pros and Cons

- Loop noise $11.25 \mathrm{MHz}<16.875 \mathrm{MHz}<9 \mathrm{MHz}$ (worse < better)
- 9 MHz needs a bit longer MC (33m not 27m)
- 9 MHz has a longer asymmetry (6.6 m compared to 3.3 m)
- 11.25 MHz is incompatible with $3^{\text {rd }}$ harmonics demodulation
- 9 MHz and 16.875 MHz have larger SRCL non-linearity

Signal Extraction Ports

- f1 sideband resonates in PRC-SRC
- f2 sideband resonates only in PRC
- f3 sideband does not enter the interferometer at all
——Carrier
——f1 sideband (PM 16.875MHz)
—— f2 sideband (PM 45MHz)
_f3 sideband (AM 56.25 MHz)

Modulation Types

PM or AM ?

- AM wastes laser power
- Low loss method exist [N. Ohmae, Opt. Lett.] ---> complicated
- Mach-Zhender may introduce extra noise.

Conventional Scheme

f1:PM, f2:PM

- No MZ
- No AM

Conventional Scheme + NRS
f1:PM, f2:PM, f3:AM

- May need MZ
- Need AM
- AM can be weak if used only for lock acquisition

AM-PM Scheme
f1: AM, f2:PM

- Need MZ
- Need AM
- May have a problem with WFS at AS

Default:
Conventional Scheme + (NRS)

Signal Ports and Naming Convention

How to decipher a signal name ?

DC Power at PDs

Attenuated to be less than 100mW on each PD

Sensing Matrix

BRSE: 16.875MHz-45MHz

	DARM	CARM	MICH	PRCL	SRCL
AS_DC	1	$4.2 \mathrm{e}-5$	$1.0 \mathrm{e}-3$	$4.8 \mathrm{e}-6$	$4.7 \mathrm{e}-6$
REFL_1I	$5.4 \mathrm{e}-3$	1	$4.3 \mathrm{e}-5$	$6.5 \mathrm{e}-3$	$4.3 \mathrm{e}-3$
REFL_1Q	$5.0 \mathrm{e}-3$	$1.3 \mathrm{e}-2$	1	1.02	0.67
POP_2I	$2.3 \mathrm{e}-2$	4.3	$1.0 \mathrm{e}-2$	1	$2.5 \mathrm{e}-4$
POP_1I	$8.7 \mathrm{e}-2$	16.23	$3.1 \mathrm{e}-2$	2.1	1

- Large Coupling from CARM to PRCL \& SRCL
- Gain hierarchy to suppress CARM
- PRCL, SRCL mixed to MICH

Sensing Matrix

Use of Non-Resonant Sideband (f3: 56.25MHz) BRSE: 16.875MHz-45MHz

	DARM	CARM	MICH	PRCL	SRCL
AS_DC	1	$4.1 \mathrm{e}-5$	$1.0 \mathrm{e}-3$	$4.8 \mathrm{e}-6$	$4.7 \mathrm{e}-6$
REFL_1I	$5.4 \mathrm{e}-3$	1	$3.9 \mathrm{e}-5$	$5.4 \mathrm{e}-3$	$4.5 \mathrm{e}-3$
REFL_1DmQ	$4.8 \mathrm{e}-3$	$2.5 \mathrm{e}-3$	1	0.7	1.3
REFL_2Dml	$2.3 \mathrm{e}-2$	$8.3 \mathrm{e}-2$	0.18	1	0.32
REFL_1Dml	$8.7 \mathrm{e}-2$	$1.5 \mathrm{e}-2$	$2.4 \mathrm{e}-2$	1.7	1

- CARM coupling is now small
- Shot noise may not be so good.

Loop Noise Coupling

Just looking at sensing matrices is not enough

- Auxiliary DOFs in general have worse shot noise than DARM
- MICH is particularly problematic one.
- MICH unavoidably couples to DARM (1/finesse)
- MICH signal is weak
- Driving MICH with this bad signal ---> Noise coupling to DARM

Loop Noise Coupling

Formulation used here:
Canonical IFO DOFs

$$
\begin{aligned}
& \vec{x}_{\mathrm{c}}=(I+G)^{-1} \cdot S \cdot \vec{n}_{\mathrm{s}}+(I+G)^{-1} \cdot S D \cdot \vec{n}_{\mathrm{d}} \\
& G \equiv S \cdot D \cdot A \cdot\left(F+F^{\prime}\right)
\end{aligned}
$$

D: Optical Gain Transfer Function calculated by Optickle
A: Mechanical TFs of the mirror suspensions + optical spring stiffness
F: Feedback filters
F': Feed forward matrix
S: Sensing matrix (here I just used identity matrix)

Loop Noise Coupling

Formulation used here:

$$
\begin{aligned}
& \vec{x}_{\mathrm{c}}=(I+G)^{-1} \cdot S \cdot \vec{n}_{\mathrm{s}}+(I+G)^{-1} \cdot S D \cdot \vec{n}_{\mathrm{d}} \\
& G \equiv S \cdot D \cdot A \cdot\left(F+F^{\prime}\right)
\end{aligned}
$$

- Ideally, G is diagonal ($\mathrm{D} \cdot \mathrm{A}$ is diagonal), but in practice it is not.
- Off diagonal elements of G introduce the shot noise of auxiliary DOFs to DARM
- F^{\prime} is added to diagonalize G (Feed forward)

Control Loop Gains

UGFs

	BRSE	DRSE
DARM	200 Hz	200 Hz
CARM	10 kHz	10 kHz
MICH	50 Hz	10 Hz
PRCL	50 Hz	50 Hz
SRCL	50 Hz	50 Hz

DARM Open Loop Gain

9MHz-45MHz

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

BRSE: $f 1=9 \mathrm{MHz}$, Feed forward gain=100

$9 \mathrm{MHz}-45 \mathrm{MHz}$

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

DRSE: $f 1=9 \mathrm{MHz}$, Feed forward gain=100

11.25MHz-45MHz

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 1 I

BRSE: $f 1=11.25 \mathrm{MHz}$, Feed forward gain=100

11.25MHz-45MHz

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 1 I

DRSE: $f 1=11.25 \mathrm{MHz}$, Feed forward gain=100

16.875MHz-45MHz

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 1 I

BRSE: $f 1=16.875 \mathrm{MHz}$, Feed forward gain=100

16.875MHz-45MHz

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

DRSE: $f 1=16.875 \mathrm{MHz}$, Feed forward gain=100

16.875MHz-45MHz

Double Demodulation with Non-Resonant Sideband
DARM: ASDC CARM: REFL 11
MICH: REFL 1DmQ
PRCL: REFL 2Dml SRCL: REFL 1DmI BRSE: $f 1=16.875 \mathrm{MHz}$, Feed forward gain $=100$

16.875MHz-45MHz

Double Demodulation with Non-Resonant Sideband
DARM: ASDC CARM: REFL 11
MICH: REFL 1DmQ
PRCL: REFL 2Dml SRCL: REFL 1DmI

DRSE: $f 1=16.875 \mathrm{MHz}$, Feed forward gain $=100$

SRCL Non-Linearity

- SRC detuning by offset => Error signal non-linearity
- Up conversion noise

Formalization

$$
\begin{aligned}
& y(t)=a x(t)+b x^{2}(t) \quad \begin{array}{l}
\text { x: mirror displacement }[\mathrm{m}] \\
\text { y: error signal }[\mathrm{W}]
\end{array} \\
& x_{\mathrm{e}}(t)=y(t) / a=x(t)+\frac{\text { Calibration }}{\text { Non-linear part }} \quad \begin{array}{l}
\text { (b/a)} x^{2}(t) \\
\text { x: Displacement equivalent error signal [m] }] \\
\text { b/ansion is } 1 / \mathrm{m}
\end{array}
\end{aligned}
$$

Total frequency conversion noise [ref. Applied Electronics, Koichi Shimoda]
$P_{\mathrm{conv}}(f)=\left(\frac{b}{a}\right)^{2}\left[\int_{0}^{f} P\left(f-f^{\prime}\right) P\left(f^{\prime}\right) d f^{\prime}+2 \int_{0}^{\infty} P\left(f+f^{\prime}\right) P\left(f^{\prime}\right) d f^{\prime}\right]$
Up Conversion

Down Conversion
$P(f)$: Displacement equivalent noise spectrum $\left[\mathrm{m}^{2} / \mathrm{Hz}\right]$, one sided.

SRCL error signal range, $\mathrm{f} 1=9 \mathrm{MHz}$
$\mathrm{b} / \mathrm{a}=1.3 \mathrm{e} 8 \mathrm{~m}^{-1}$
$\mathrm{f} 1=9 \mathrm{MHz}$
SRCL Sweep

SRCL error signal range, $\mathrm{f} 1=11.25 \mathrm{MHz}$

$\mathrm{f} 1=11.25 \mathrm{MHz}$
SRCL Sweep

SRCL error signal range, $\mathrm{f} 1=16.875 \mathrm{MHz}$

```
b/a = 1.05e8 m-1
```

$\mathrm{f} 1=16.875 \mathrm{MHz}$

Up Conversion Noise

- Blue Curve: SAS displacement noise + SRCL shot noise
- Green Curve: Above noise suppressed by the servo
- Red Curve: Non-linear up conversion noise (b/a=1e9)

It does not seem to be a problem

PD Dynamic Range

Offsets in MICH and CARM --> Dynamic Range of RFPD circuit SRC detuned: f1 SB is not at the peak of the resonance

- f1 gets some phase rotation at REFL and POP
- f1 is no longer pure PM for the carrier
- Large offset at PDs for f1 SB

The buffer op-amp of the PD circuit has to handle this large RF signal
Max RF amplitude: ~ 0.1Vpp (?) Slew rate and linearity
Noise of the op-amp: $>1 \mathrm{nV} / \mathrm{rtHz}$
Dynamic Range $\sim 160 \mathrm{~dB}$
Actual Numbers
REFL_1 PD gets 55mW of offset RF signal@f1 frequency(16.875MHz) in DRSE Input power equivalent noise of op-amp is $55 \mathrm{~mW} / 1 \mathrm{e} 8 / \mathrm{rtHz}=5.5 \mathrm{e}-10 \mathrm{~W} / \mathrm{rtHz}$
Sensitivity is $1.64 \mathrm{e} 9 \mathrm{~W} / \mathrm{m}$ for CARM, 2.0e6 W/m for MICH
Displacement equivalent op-amp noise is $3.4 \mathrm{e}-19 \mathrm{~m} / \mathrm{rtHz}$ for CARM, $2.7 \mathrm{e}-16 \mathrm{~m} / \mathrm{rtHz}$ for MICH

POP_1 PD gets 7.2 mW of offset RF signal@f1 frequency(16.875MHz) in DRSE Input power equivalent noise of op-amp is $7.2 \mathrm{~mW} / 1 \mathrm{e} 8 / \mathrm{rtHz}=7.2 \mathrm{e}-11 \mathrm{~W} / \mathrm{rtHz}$
Sensitivity is $3.3 \mathrm{e} 5 \mathrm{~W} / \mathrm{m}$ for SRCL
Displacement equivalent op-amp noise is $2.2 \mathrm{e}-16 \mathrm{~m} / \mathrm{rtHz}$ for SRCL

Risk: PD Noise Coupling with Feed Forward

Risk: SRCL detuning by Offset

How to deal with the PD dynamic range problem?

- Find a good op-amp with larger dynamic range
- Increase the feed forward gain

Conclusion on the Modulation Frequencies

| 9 MHz | 11.25 MHz | | 16.875 MHz |
| :--- | :--- | :--- | :--- | :--- |
| Loop Noise | Good | OK | Good |
| SRCL Non-linearity | OK | OK | OK |
| 3rd
 Demodulation | OK | No | OK |
| Lprc,Lsrc | 74.95 m | 73.28 m | 66.62 m |
| Asymmetry | 6.66 m | 3.33 m | 3.33 m |
| Lmc | 33.3 m | 26.65 m | 26.65 m |
| f3 | $13.5 \mathrm{MHz}\left(\mathrm{f2} 2^{*} 3 / 10\right)$ | $61.9 \mathrm{MHz}\left(\mathrm{f} 2^{*} 11 / 8\right)$ | $56.3 \mathrm{MHz}\left(\mathrm{f} 2^{*} 10 / 8\right)$ |
| DDM freq. | $22.5 \mathrm{MHz}, 31.5 \mathrm{MHz}$ | $16.9 \mathrm{MHz}, 50.6 \mathrm{MHz}$ | $11.25 \mathrm{MHz}, 39.4 \mathrm{MHz}$ |

Displacement Noise Requirements

Formulation used here:

$$
\begin{aligned}
& \vec{x}_{\mathrm{c}}=(I+G)^{-1} \cdot S \cdot \vec{n}_{\mathrm{s}}+(I+G)^{-1} \cdot S D \cdot \vec{n}_{\mathrm{d}} \\
& G \equiv S \cdot D \cdot A \cdot\left(F+F^{\prime}\right)
\end{aligned}
$$

- (I+G) ${ }^{-1}$ SD: transfer function from n_{d} to x_{c}

Safety factor

- Require n_{d} 's contribution to xc to be $1 / 10$ of DARM shot noise
- Requirement on each mirror's displacement noise (seismic, thermal, etc)

Displacement Noise Requirements
BRSE

Displacement Noise Requirements
DRSE

Folding of Recycling Cavities

Straight Recycling Cavity ==> Nearly Degenerated
How badly degenerated?

```
g-factor (g1*g2) = 0.9998
One-way Gouy Phase Shift = 0.7deg.
Transverse Mode Spacing = FSR/257
PRC Finesse = 57 (FWHM = FSR/57)
(PRCL = 42.5m,occupying the same tunnel space)
```

- $\mathrm{HG}(\mathrm{m}, \mathrm{n})$ modes resonate up to $m+n=2$
- $\mathrm{LG}(\mathrm{p}, \mathrm{q})$ modes resonate up to $2^{*} p+q=2$

The RFSB spatial modes are unstable (alignment fluctuation, thermal lensing)

Folding the PRC and focusing the beam inside ==> Stable PRC

How about SRC?

- f1 SB resonates in PRC-SRC
- If PRC is stable, HOMs cannot resonate in PRC-SRC.
- No need to fold SRC ? -> Not so simple
- GW sidebands may be scattered to HOMs by mode mismatch between the arm cavities and SRC.
- The loss of GW sidebands is higher for degenerated SRC
(Kip Thorne \& Yi Pan)

SRC Folding

$$
\begin{aligned}
& \text { Yi Pan's report (LIGO-T-060004): ITM ROC error of } 0.25 \%==>\text { Up to } 2 \% \text { GW Signal Loss } \\
& \qquad \text { Loss } \propto\left(\text { (ITM Error) }{ }^{2}==>1 \% \text { error }->32 \%\right. \text { signal loss }
\end{aligned}
$$

The situation for LCGT should not be too different from aLIGO
But we should check it anyway

- HOM simulation using Finesse
- No definitive answer yet
- Large (1W) TEM00 leak at AS port if not folded
- Seems like non-folded SRC is bad

For the moment, the default design is to fold SRC

- Cost increase (two more vacuum tanks, suspensions, mirrors)
- Additional control of SR2, SR3 alignment (we have to control PR2, PR3 anyway)
- Folded SRC provides a convenient port for green laser injection
- The beam size at AS is smaller and easy to handle (4mm)
- If necessary, the tunnel can accommodate straight SRC (Lsrc=40m)

Folding Design

How Stable?

- HOM isolation ==> Stable is better
- Too stable ==> Arm alignment signal is suppressed
- Compromise between HOM and ASC ==> One-way Gouy Phase Shift = 20deg. Not Optimized Yet
How to fold the PRC/SRC ?

Constraints

- Minimum vacuum chamber spacing: 2.7 m
- Astigmatism: Smaller folding angle is better ==> Longer Lp2

Mirror locations are almost uniquely determined Play with ROCs of PR2 and PR3

Beam Propagation in PRC

Beam Width Change in PRC

Folding Optimization

Mirror distances: fixed One-way Gouy phase: 20deg

Thermal Lens

ITM Lensing

1W heat deposit on the mirror

ROC=11661km, No Problem

Thanks to the high thermal conductivity of sapphire

1mK Temperature Raise

Calculation by Muzammil A. Arain (UFL)

Thermal Lens

PRM, PR2

Beam Spot Size: 4mm Power on HR: 800W

PR3, BS

Beam Spot Size: 35mm Incident Power: 800W

	PRM	PR2	PR3	BS
10 ppm absorption	18% ROC error	0.2% ROC error	0.3% ROC error	ROC 100km
1ppm absorption	2% ROC error	0.02% ROC error	0.03% ROC error	ROC 1000km

ROC Error of PR2, PR3

Very Sensitive to PR3 ROC Error

How to Handle PR3 ROC error ?

iLCGT

- No SAS. Suspensions can be easily moved by more than 10 cm
- PR2 and PR3 for iLCGT will be used in bLCGT
- PRM is a blank with curvature

bLCGT

- PR2 and PR3 position can be changed by more than 10cm at the installation time
- After installation, it takes time to move them

Installation and Adjustment Plan

1. Make PR2 and PR3
2. Measure the ROCs of PR2 and PR3
3. Install them to iLCGT
4. Adjust the location of PR2 and PR3 to form the desired telescope
5. Remember the optimal location of PR2 and PR3
6. Measure the ROC of PRM, which match the actually formed PRC.
7. Order a PRM according to the measured ROC.
8. Install PR2 and PR3 at the remembered positions for bLCGT
9. Install the PRM

Modulation frequency Fine adjustment

f1 and f2 SBs are not exactly anti-resonant to the arm cavities

- $f 1$ and $\mathfrak{f} 2$ get finite phase shifts from the arm cavities
- In general, f1 and f2 cannot fully resonate in the PRC at the same time
- Fine adjust the MC length (thus f1, f2 frequencies) to achieve
$\Phi 1: \Phi 2=\mathrm{f} 1: \mathrm{f} 2 \quad(\Phi 1$: phase shift of f 1 by the arm, $\Phi 2$: phase shift of f 2 by arm)
- Lprc and Lsrc are adjusted accordingly

Locations of RF SBs in the FSR of AC

f1 resonance

Adjust Lsrc by 7.4 mm

Alignment Sensing and Control

Basic Strategy

Combination of Wave Front Sensing (WFS) and Optical Levers

Arm Cavity Misalignment Modes

Combinations of the ITM, ETM rotation to diagonalize the angular stiffness matrix
\longrightarrow Hard - Soft basis
[Common Hard (CH), Common Soft (CS), Differential Hard (DH), Differential Soft (DS)]

Folding and ASC

- RCs are very stable --> TEM01 and TEM10 modes are suppressed
- No ASC signal of TMs
- One-way Gouy phase shift in RCs --> about 20 deg.
- Needs optimization
- What to do with the alignment of folding mirrors ?
- Not enough DOF from WFS
- Control a linear combination of PRM,PR2,PR3 angles ?
- Is it stable?

Simulations with Optickle (Pickle), work in progress

bLCGT ASC Sensing Matrix

Angle Sensing Matrix [W/rad]

POYBQ2 $-\quad-5.54$	-4.5	-132	155	0.392	0.363	0.443	-0.00311	-0.00591	-0.0496	-372
POY B I2 - 1e+003	-1.17e+003	856	$-1.22 \mathrm{e}+003$	-84.6	-935	-7.9e+003	-0.0162	-0.0309	-0.259	-68.3
POY AQ2- 97	98.2	-1.15e+003	$1.23 \mathrm{e}+003$	-5.64	-1.35	39.5	-0.0131	-0.025	-0.209	-3.05e+003
OY A I2 $-\quad-145$	-23	$1.06 \mathrm{e}+003$	-1.15e+003	9.92	54.2	412	0.00955	0.0182	0.152	Зe+003
POY $\overline{\mathrm{B}} \mathrm{P}^{-}-76.9$	33	42.8	48.3	2.66	36.2	310	-0.143	-0.271	-2.27	67.1
POY B I1 - -58.1	61.4	54.9	-50.7	3.31	49.3	426	-1.59	-3.03	-25.4	283
POY $\bar{A} \mathbf{Q 1}^{-}-135$	155	135	-155	11.6	127	1.07e+003	-0.00453	-0.00862	-0.0723	758
Y AI1- 184	-20.2	-190	40.7	-7.69	-83.8	-705	7.85	14.9	125	-536
POXBQ2- 675	-851	-1.07e+003	$1.37 \mathrm{e}+003$	-57.9	-658	-5.58e+003	0.00518	0.00985	0.0825	-5.16e+003
Х B I2 - -591	761	810	-1.06e+003	50.8	583	$4.94 \mathrm{e}+003$	-0.00955	-0.0182	-0.152	$4.2 e+003$
$\mathrm{POX} \overline{\mathrm{A}} \mathrm{Q} 2-54.1$	-57.8	87	-111	-4.48	-48.1	-406	-4.26e-005	-8.09e-005	-0.000678	115
POX A 12 - 459	-267	$1.21 \mathrm{e}+003$	-1.21e+003	-35.3	-313	$-2.58 \mathrm{e}+003$	0.0202	0.0384	0.322	$2.21 \mathrm{e}+003$
$\mathrm{POX} \mathrm{BQ1}-16.4$	31.1	17.2	-52.7	0.0136	10.4	95.9	2.01	3.82	32	125
POX B I1 - -1.75	3.3	5.88	-11	1.09	2.02	8.96	1.93	3.66	30.7	24.2
POX $\mathrm{AQ1}=223$	-62.1	219	-57	-10.3	-116	-976	7.51	14.3	120	-3.85
POX A I1 -102	156	-103	157	10.1	114	966	0.998	1.9	15.9	5.74
POPBQ2 -5.91	4.14	-0.136	0.165	-0.436	-0.812	-4.21	$1.4 \mathrm{e}-006$	2.65e-006	2.22e-005	-1.74
POP B I2 - -1e+003	1.17e+003	-1.77	2.36	84.8	938	$7.93 \mathrm{e}+003$	-0.000147	-0.000279	-0.00234	2.8e+003
$\mathrm{POP} \overline{\mathrm{A}}$ Q2 -18.9	-135	0.569	-0.589	-3.01	-65.6	-582	$1.24 \mathrm{e}-005$	$2.36 \mathrm{e}-005$	0.000197	-206
POP A I2 -63.4	188	-0.585	0.451	-2.09	52.7	509	-1.01e-005	-1.92e-005	-0.000161	182
POP $\overline{\mathrm{B}} \mathrm{Q}^{-1}-43.4$	4.25	7.14	-9.18	0.965	11.4	96.3	0.579	1.1	9.23	41.3
POP B I1 ${ }^{-} \quad 9.22$	-1.14	34.8	-43.7	-0.208	-2.51	-21.3	-0.116	-0.22	-1.85	97.3
POP A Q1 -0.0796	0.931	-155	195	0.055	0.594	5.01	0.000227	0.000432	0.00362	-452
POPA A1 ${ }^{-}-82.2$	-64	-0.395	-0.193	0.423	4.12	33.7	-6.81	-12.9	-109	12.7
AS BQ1 -1.0 .628	2.78	-922	-491	-0.0259	-4.5	-41.5	-0.000256	5.91	53.6	-166
AS BI1 -85.6	-125	6.65 e+003	$3.81 \mathrm{e}+003$	-4.38	-45.2	-378	3.76	-36.5	-336	535
AS AQ1- -42.5	53.1	0.98	-34.7	3.75	41.8	354	-0.103	-0.19	-1.59	176
$11-51.6$	-18	-1.95e+004	-1.5e+004	-2.56	-34.6	-296	-1.3	5.64	51.2	$-2.02 \mathrm{e}+003$
REFLEBQ2 -445	97.4	-1.51	2.35	5.28	236	$1.9 \mathrm{e}+003$	-4.01e-005	-7.62e-005	-0.000639	660
REF[B I2 - -1.08e+004	-9.77e+003	8.28	14.8	-871	571	-570	0.000124	0.000235	0.00197	-490
REFL $\overline{\mathrm{A}}$ Q2 - $-9.58 \mathrm{e}+003$	-4.22e+003	-3.41	22.5	-356	2.27e+003	$1.55 \mathrm{e}+004$	-0.000239	-0.000455	-0.00381	$5.27 \mathrm{e}+003$
REF[A I2 --1.08e+004	-5.39e+003	-1	22.6	-448	$2.3 \mathrm{e}+003$	1.51e+004	-0.000219	-0.000416	-0.00349	5.1e+003
REFLBQ1 ${ }^{-}$	-11	-943	$1.19 \mathrm{e}+003$	0.0786	4.98	39.8	-1.43	-2.71	-22.7	$-2.75 \mathrm{e}+003$
REF[B I1 - -1.84e+003	-1.46e+003	21.1	-27.6	-110	158	685	-40.6	-77.2	-647	279
REFL $\overline{\mathrm{A}}$ Q1 ${ }^{-}-1.23$	10.9	-978	$1.23 \mathrm{e}+003$	1.57	3.41	36.1	-0.787	-1.5	-12.5	$-2.85 \mathrm{e}+003$
REF[_A I1 - -2.05¢+003	-1.47 ¢ +003	7.12	-10.2	-99. 4	194	995	-3¢.5	-69.5	-582	294
OS	CH	DS	DH	PRM	PR2	PR3	SRM	SR2	SR3	BS

Lock Acquisition

Principle: Lock acquisition has to be a deterministic process

Lock acquisition steps

1. Pre-lock the arms at off-resonant positions (Green laser pre-lock)
2. Lock the central part using the third harmonics demodulation or non-resonant sideband
3. Reduce the arm offset to the full resonance
4. The error signals to low noise ones

Green Laser Pre-Lock

Basic ideas for green laser lock

- Two green lasers (Frequency doubled from 1064nm)
- Green lasers are phase locked to the main laser by PLL
- Green Lasers are injected from PR2 for X-arm, and SR2 for Y-arm
- PR3 and SR3: High reflectivity for green (>90\%)
- BS is transparent to green
- Arm finesse for green is low (~10)
- Two green lasers are frequency shifted by $\sim 100 \mathrm{MHz}$
- Lock the arms independently by the green lasers
- Arm cavity length can be finely tuned by sweeping the PLL

Third Harmonics Demodulation

- Beat between 2*f1 and f1 (Insensitive to the arms)
- Useful for lock acquisition.
- Substitutes for NRS. No MZ, no AM necessary -> simple.

Unfortunately, all the f1 candidates cannot use this method in the usual sense, because 2*f1 resonates in the PRC-SRC.
(f1 frequencies tested: $9 \mathrm{MHz}, 11.25 \mathrm{MHz}, 13.5 \mathrm{MHz}, 16.875 \mathrm{MHz}, 19.3 \mathrm{MHz}$)
Actually, $3^{\text {rd }}$ harmonics demodulation produces some signal due to difference in the response of 2*f1 and f1.
However, strong interference from the carrier is present (carrier-3*f1 beat).

Third Harmonics Demodulation

$3^{\text {rd }}$ Harmonics signal during lock acquisition

CARM offset: $2 n m$-> 0

MICH is affected by CARM

Non-Resonant Sideband for Lock Acquisition

NRS serves as a local oscillator insensitive to the arms

NRS signals during the lock acquisition

CARM offset: 2 nm -> 0

Detailed Optical Layout

Detailed optical layout design is a non-trivial task!

> We have to ...

- Take into account wedge deflection
- Make the two arms at the right angle
- Track the optical path length (for SB resonant conditions)
- Track the Gaussian mode evolution
- Track the Gouy phase evolution
- Take into account the dispersion effect for the green beams
- Trace secondary beams (AR reflected)
- Generate CAD files

A python package to do the above job was developed. gtrace: A Gaussian ray tracing library
(Validation of the library was done by Chen Dan)
iLCGT

- iLCGT has to be on the way to bLCGT
- Minimum detour from the straight path to bLCGT
- Most parameters are the same as bLCGT

Interferometer Configuration

- Fabry-Perot Michelson Interferometer (no recycling)
- Arm cavity finesse is the same as bLCGT

Mirrors

- Test masses are fused silica
- All the other mirrors are to be used in bLCGT (BS and the folding mirrors)
- PRM is a blank with curvature (for mode matching)
- No SRM installed.

LSC

- A simple frontal modulation scheme using f1 SB only

ASC

- Wave front sensing at REFL and AS

iLCGT Sensing Matrices

LSC

	DARM	CARM	MICH
AS_1I	1	1.7×10^{-3}	1.0×10^{-3}
REFL_1I	8.8×10^{-3}	1	1.3×10^{-4}
REFL_1Q	4.5×10^{-3}	5.5×10^{-5}	1

ASC (Diagonalized)

	CSOFT	CHARD	DSOFT	DHARD
REFL_2IB	1	0	-8.7×10^{-5}	-1.8×10^{-4}
REFL_2IA	0	1	1.3×10^{-3}	8.7×10^{-5}
AS_1QB	-2.5×10^{-5}	3.4×10^{-6}	1	0
REFL_1QA	1.3×10^{-4}	-2.4×10^{-5}	0	1

What to do next?

ASC and Folding Optimization

Technical Noise Couplings

- Laser Noise (frequency, intensity)
- Modulator phase noise
- Actuator noise (hierarchical control)

- PD noise
- etc

OMC Design (together with the IOO group)

- Requirements (HOM reduction ratio)
- Control Schemes
- Prototype test

Requirements to other subsystems

Simulated IFO plant

- Expedite the commissioning
- Make effective use of tunnel excavation \& vacuum installation period (2 years)

Develop a computer model of the IFO

- Connected to the digital control system
- Develop the LSC \& ASC digital servo system before actual interferometer is available
- Once real interferometer is installed, use the pre-developed servo system

Linear Model
Model Generation: Optickle Implementation: Digital System
Non-Linear Model
Time-domain simulation: e2e Non-realtime Simulate lock acquisition etc..

Schedule

During the construction period

Tasks	FY2011												FY2012												FY2013			
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7
Design																												
ASC																												
Folding Optimization																												
Simulated Plant Test																												
Linear Plant																												
Non-linear time domain plant																												
Digital Controller																												
Closed Loop Test																												
OMC																												
Requirement fix																												
LSC Design																												
ASC Design																												
Prototype Fabrication																												
Prototype Test																												

Schedule

Commissioning Period

	FY2013									FY2014												FY2015											
Tasks	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
FPMI																																	
X-arm																																	
Y-arm																																	
MI																																	
FPMI																																	
Noise hunting																																	
Observation																																	
RSE1																																	
Preparation																																	
DRMI																																	
PRFPMI																																	
RSE																																	
Observation																																	
RSE2																																	
VIS Upgrade																																	
RSE																																	
Observation																																	

Tasks	FY2016 FY2017																							
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CRSE																								
Installation of Cryogenic System																								
Single Arm Tests																								
FPMI																								
RSE																								
Noise hunting																								
Observation																								
Noise Hunting																								

Risks

- Arm loss may be higher --> PRC becomes under coupled
- Prepare several PRMs with slightly different reflecvitities
- Arm loss may be smaller
- Shot noise increase of the DDM signals
- HD phase depends on the amount of reflectivity mismatch between the arms
- DARM offset may have to be very large
- HD phase may be almost 90 deg.
- SRC detuning by offset
- PR3 ROC error
- Leave room for moving PRM, PR2, PR3, SRM, SR2 and SR3
- ASC design
- How to control the folded PRC/SRC ?
- OMC design
- Control Schemes

Summary

Interferometer Design (bLCGT)

- RSE interferometer
- Variable BRSE/DRSE
- 66m folded recycling cavities

Interferometer Design (iLCGT)

- Fabry-Perot Michelson
- No Recycling

Length Control Scheme

- 16.875MHz-45MHz PM, Single demodulation
- Optional Non-Resonant Sideband

Alignment Sensing Scheme

- WFS \& Optical Lever
- Needs more study

Lock Acquisition

- Green laser pre-lock
- Third harmonics demodulation or NRS

TO DO

- Alignment Sensing Schemes
- Folding design optimization
- OMC design
- Technical noise couplings
- Simulated IFO plant

