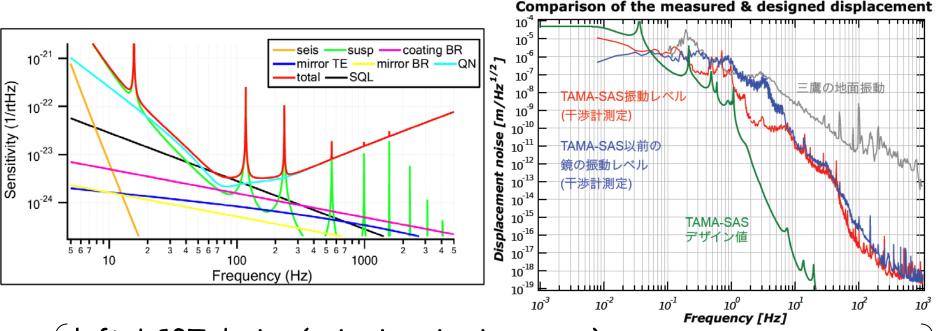


<u>Contents</u>


- Fundamental noise parameters
 - LCGT design sensitivity is determined by QN, TN, seismic
 - Deterioration of the parameters degrades the sensitivity
- Other noise sources
 - Residual gas, laser noise, control-loop noise, etc.
 - Each noise should be 1/10 or less of the design sensitivity
- Interface parameters
 - Listing up all the parameters
 - Recognizing common parameters to subsystems
- Discussions

<u>Requirements for QN/TN parameters</u>

- IR reduction by degrade of some major parameters
- IFO setup is fixed
- <u>I'm gonna show the values</u> for 1-2% reduction later
- Most of them changes the IR almost linearly

Requirements for seismic isolation

left: LCGT design (seismic noise in orange) right: TAMA seismic noise with SAS (design in green, result in blue)

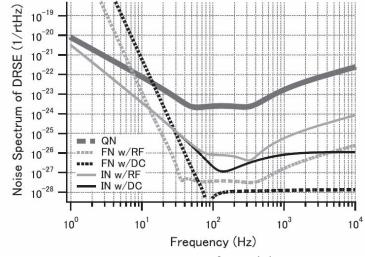
- 5-order degradation makes only 30% IR reduction
- In fact, it is easy for such a thing to happen
- Takahashi-san says the worst-case noise level can be calculated

<u>Other noise sources</u>

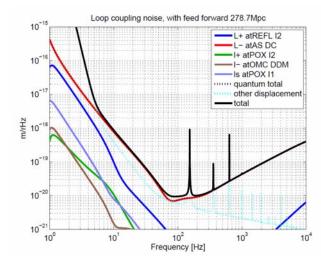
Excess noise should be 1/10 or less of the design sensitivity

• Laser noise

Transfer function has been calculated analytically, but it's probably better to use Optickle code for more detailed calculation (>> ISC task)


Loop noise

Optickle code can calculate loop noise (>> ISC task). Number of issues remain.


Residual gas noise

Requirement for the vacuum level is given: P < 5e-7 Pa (with positive g-factor) P < 3e-7 Pa (with negative g-factor)

- Analog circuit noise
- Digital-system noise

Laser noise TF for old aLIGO

Loop noise of LCGT

<u>Cleanliness</u>

- Facility support group is required to find a leader!
- Good mirrors can be easily contaminated on the way to its place
- LIGO has a lot of reports on this issue
- We will have only one spare mirror per arm
- Different requirements for different places:
 - CLASS 10,000 in the tunnel (?)
 - CLASS 1,000 in the lab
 - CLASS 100 in the assembly area (clean room)
 - No particles >1um in the vacuum chamber

(Those numbers are very preliminary)

Requirement report

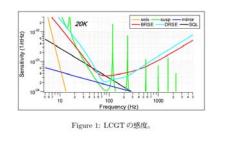
LCGTのスコープと各サブシステムの要求値

LCGT Optical Configuration Group

January 23, 2011

1 はじめに

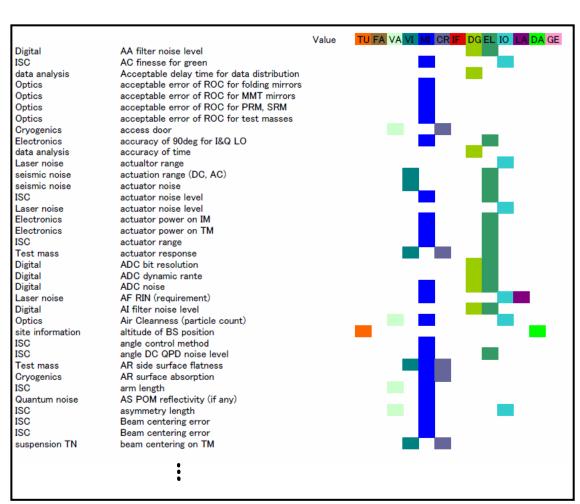
ここでは主に bLCGT について考える。


2 Duty cycle 目標

年間を通じて 90 %の duty cycle を目標とする。

3 感度目標

中性子連星からの重力波を年に2-3 回以上の頻度で観測できる感度の実現を目標とする。Duty eveleが90%で年3回の観測を実現するために必要なinspiral range (IR)は221 Mpcである。こ の数字に安全係数10%を掛けた244 Mpcを目指し、地面振動、熱雑音、量子維音という3つ の展明的な撮音を下げるよう、干渉計の基本構造を決定する。これら以外の雑音は、それぞれが 原則としてデザイン感度の10分の1以下になるようにする。



1

- Requirements are to be set with
 (i) excess noise level (ii) feasibility
 taken into account
- Configuration group is preparing a report with Prof. Kawamura and Prof. Ando.
- We will ask subsystems for some helps and opinions
- The report will show requirements for each subsystem

Interface parameters

- We've listed up so far
 600+ parameters
- Related subsystems are marked
- List will be distributed to subsystems

* Values are not filled yet

Discussions on QN/TN parameters

Optical loss and laser power

IR reduction	0%	1%	2%
Carrier power	81W	64W	57W
Arm loss	100ppm	124ppm	138ppm
SRC loss	2%	2.5%	3.0%
PD loss	10%	13.6%	17.1%

- IFO setup is fixed (detuning and DC readout phase)
- Arm loss causes (i) PRG reduction (ii) signal reduction
- SRC loss and PD loss cause signal reduction
- IR reduction due to the mode mismatching has been recently calculated by Nishida-san (TBA)

Mirror Qs and temperature

IR reduction	0%	1%	2%
Temperature	20K	20.7K	21.4K
(Absorbed heat)	(1W)	(1.16W)	(1.31W)
Silica coating loss	3e-4	3.5e-4	4.0e-4
Tantala coating loss	5e-4	6.6e-4	8.2e-4
Substrate Q	1e8	5.0e7	3.3e7

- Increasing heat absorption raises the temperature and increases thermal noise
- Measured coating losses are 5e-4/8e-4 but the values can be better with a proper annealing

Fiber losses and VH coupling

IR reduction	0%	1%	2%
Sapphire fiber (TM)	2e-7	2.32e-7	2.67e-7
Tungsten fiber (IM)	1e-4	N/A	
BeCu fiber (RM)	5e-6	1.8e-5	3.1e-5
Clamp loss	1e-3	1.6e-2	3.6e-2
VH coupling	1:200	1:172	1:152

- \cdot TM, RM, and VHC are severe
- \cdot IM TN is diluted with a mini-GAS btw IM and PF
- Mini-GAS resonance is set 0.4Hz (-> 3Hz?)
- The robe of vertical resonance may increase

End