

Status report from digital system subgroup

2011/2/4(Fri) LCGT f2f meeting Osamu Miyakawa, ICRR

Concept of the digital system

Overview of digital system subgroup

- Real time system
- PC, software
- ADC/DAC/BO, AA/AI
- DAQ/RFM/timing network

- Control, monitor, switch
- Auto lock, auto alignment
- Commissioning, noise hunting
- Diagnosis, tuning, calibration
- Operation, observation

Before LCGT funded

~FY2010: Development of prototype system at/using

CLIO

After LCGT funded

FY2011~: Delivering stand alone system to subgroups

Designing circuits

Small Test bench of network of digital systems

FY2012~: Test operation system as whole network at

Kamioka building

FY2013: Installation of full digital system into mine

CLIO sensitivity using Digital control

Hardware

Making channel lists

- Needs channel list for ADC/DAC/BO
 - ADC input ~2048ch
 - will be categorized as class1(IFO main), class2(IFO sub), class3(PEM, physical environment monitor)...
 - DAC output: ~512ch
 - BO: ~2048ch
- DAQ channel: stored signals to data storage as 16kHz, 2kHz, 64Hz...

DAQ Channel list

	Number of stored channels	Data acquisition, Data analysis, IFO control	16kHz:64ch, 2kHz:512ch, 64Hz:1024ch 16Hz:16384 epics channels (see channel list)	
*	Data bit resolution at ADC/DAC	Data acquisition	16bit = 65555	
*	Data bit resolution in PC	Data acquisition	32bit = 4 Byte integer	
	Data transfer rate	Data acquisition	4MB/sec for 16kHz, 4MB/sec for 2kHz, 128kB/sec for 64Hz, 1MB/sec for 16Hz, Total ~10MB/sec ~30GB/hour ~1TB/day ~300TB/year	

6. Channel list

a. 16kHz (total 64ch)

Part	Channel point	Channel number	Description
Laser	Output laser power[W]	1	
	IFO Input laser power[W]	1	
МС	REFL	1	
	MC length feedback	1	
	MC frequency feedback	1	
LSC	I&Q dor DARM, CARM, MICH, PRC, SRC, etc.	10	
	error, feedback	10	
SUS	length * 10 suspensions	10	

b. 2kHz (total 256ch)

Part	Channel point	Channel number	Description
ASC	WFS	5xpitch, yaw=50	
	Oplev	10xpitch,yaw=100	

c. 64Hz Long term monitor (total 512ch)

Part	Channel point	Channel number	Description
Temperature[deg]	room	10	center, end, arm
	table	10	laser, REFL, AS, pickoff, end
	suspensions	50	Low temperature
	mirrors	50	Low temperature
Humidity[%]	rooms	10	center, end, arm
Dust	rooms	10	center, end, arm
Laser	crystal temperature[degree] and etc.	10	
	Master laser power[W]	2	

Network design

Connecting subsystems into digital system

Stand alone system for subsystems

- 5sets of stand alone digital system will be delivered to subgroups in FY2011
 - Front-end real time PC
 - Workstation/desktop PC with software setup
 - Expansion chassis
 - Timing slave board
 - ADC, DAC, Binary Output
 - Interface board to ADC/DAC/BO
 - Anti Alias/Anti imaging
- Seismic attenuation, IOO group, cryostat...
- Budget:
 - 21M yen in FY2010 for PC, IO chassis, ADC/DAC and other hardware(almost done)
 - 15M yen in GY2011 for circuits

Interface

- ADC 32ch/card
 - 16kHz sampling
 - With Anti Alias filters
 - 2uV/rHz
 - D-sub 9pin(for 4ch, differential), +/-20V input
- DAC 16ch/card
 - With Anti Imaging filers
 - -1.5 uV/rHz
 - D-sub 9pin(for 4ch, differential), +/-10V output
- BO 32ch/card
 - D-sub 9pin(for 4ch, differential), 0 or +5V output
 - Ex. Variable gain amp for 16 steps/1 D-sub connector

Designing subsystems with digital system

- Include following items on your subsystem's design;
 - Analog variable gain stage
 - Analog Whitening/dewhitening filters
 - BO switch for stepping gain stage and switching w/dw filters on/off
 - Do NOT contain slow analog servo, make it digital! We will offer enough number of channels
- Make a Driver/interface box between your subsystem and digital system to realize above functions
- Propose 100V/rHz rule:
 - Do NOT transfer under 100nV/rHz signal, too fragile
 - Amplifier signals until over 100nV/rHz before transfer
 - Use analog variable gain stage and whitening filters in your box which is controlled by digital BO

- Pictures

W-G1100324

0 0

OUT2

ONE STOP

PCIe接続

Real time PC CentOS 5.2+real time kernel

4core x 2 Xeon

Anti Imaging filters
Anti Alias filters

DAC adapter

ADC adapter

Binary output adapter

ADC/DAC
In Expansion Chassis

ADC:32ch/\$4K DAC:16ch/\$3.5K

Binary Output:32ch/\$250

