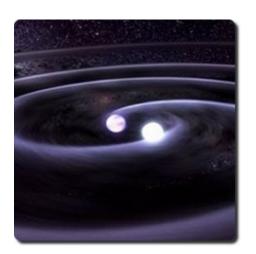
LCGT Detector Configuration


LCGT F2F meeting @ ICRR Feb. 2011

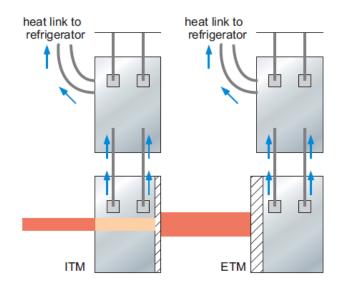
Waseda Inst for Advanced Study
Kentaro Somiya

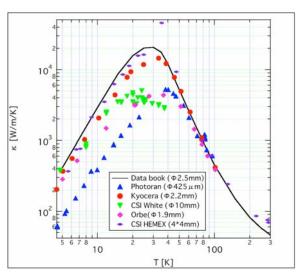
LCGT Goal

"Detecting GW a few times per year"

- (1) NS-NS binary inspirals
 SN=8@190Mpc; ~1 event per year
 SN=8@240~270Mpc; 2-3 events per year
 (Duty cycle=90%, detection probability=90%)
- (2) Cooling mirrors to 20K and circulating 400kW light in 3km arms, we can realize the sensitivity.

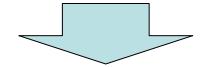
IFO Design


<u>Detector Configuration Group</u>


1. Design the detector according to the noise analysis

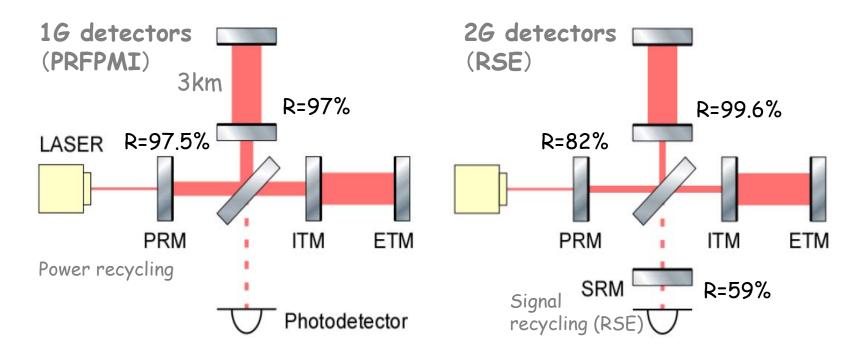
2. Set requirements to realize the sensitivity

3. Risk management


Cryogenic system

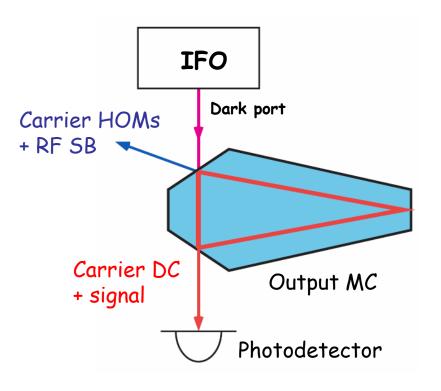
Thermal conductivity of Sapphire fiber

- (1) Use Sapphire substrate that is good with 1064nm laser, has high thermal conductivity, and has high Q
- (2) 20K fiber can transfer ~1W heat
- (3) Absorption of Sapphire substrate is not small



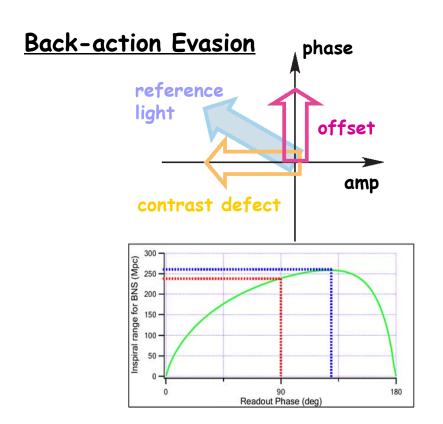
High-finesse RSE (F=1550)

- · 825W in PRC, Arm power=400kW
- Absorption in ITM substrate=0.24W
 Absorption in coatings=0.20W
- Fiber diameter=1.6mm, length=30cm

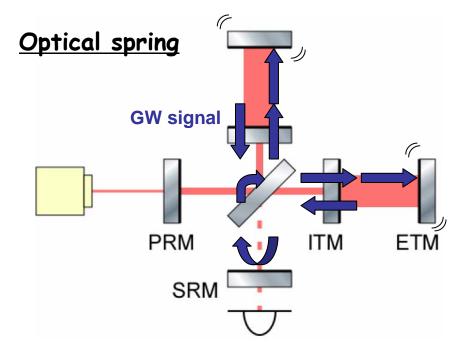

RSE=Resonant Sideband Extraction

Same shot-noise level but different power in ITMs

DC readout


RF readout to DC readout

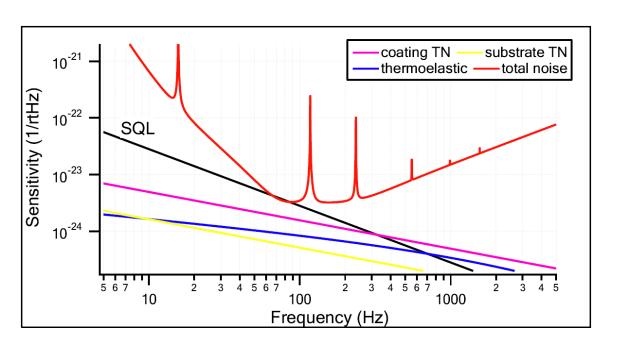
- 10% better shot noise
- · lower laser noise
- almost no RF noise
- · simpler OMC
- simpler PD


Adding offset to the arms and use the leaking DC light as reference

DC readout lets us use QND technique to reduce quantum noise

BAE and Optical spring

RP noise can be compensated by optimizing the DC readout phase



BRSE: ITM-SRM RT=(N+1/2)λ DRSE: ITM-SRM RT≠(N+1/2)λ

We can beat the SQL by changing the SRM microscopic location

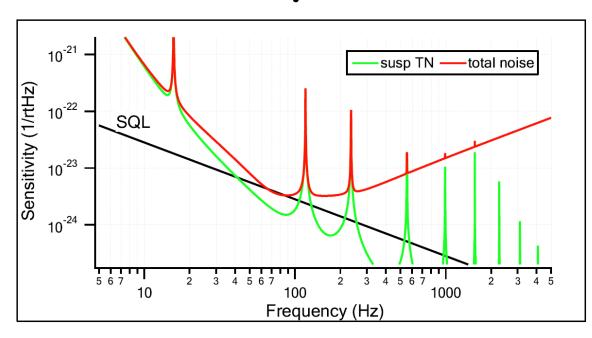
IR increases by 7% with BAE, and extra 12% with detuning.

Mirror thermal noise


```
Coating BR:
mirror distortion by thermal
energy in the coatings
```

Mirror TE:

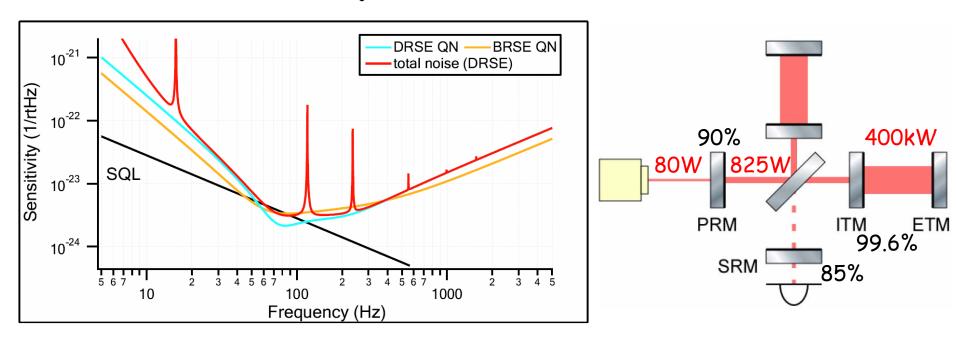
mirror expansion by temperature fluctuation via thermal expansion


Mirror BR:

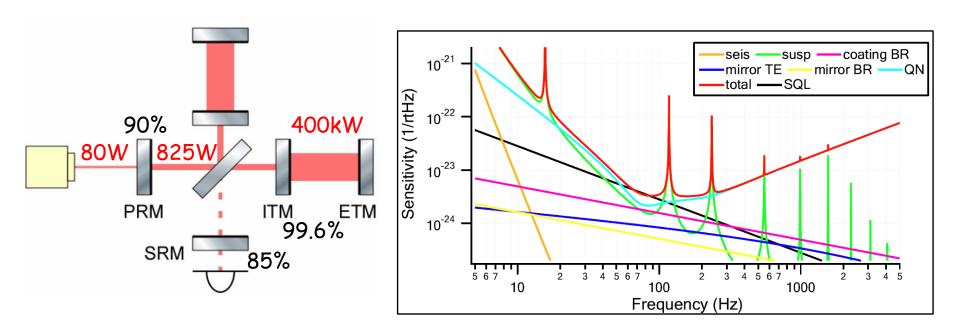
mirror distortion by thermal energy in the substrate

Substrate Q=1e8 Ti-Tantala coating ϕ =5e-4 Silica coating ϕ =3e-4 ITM:9 layer, ETM:18 layer

- Mechanical loss of coatings increases at 20K; aLIGO:2e-4/5e-5
 *UK Measurement tells 8e-4/5e-4, but it'll be better by 60% with 600C annealing
- · Sapphire Substrate Q of 1e8 is a measured value
- · Beam radii are 3.5cm on ITM, and 4.2cm on ETM
 - ~ should be tuned to avoid HOM resonance (g1=-0.87, g2=-0.60)
 - ~ ITM beam size is limited by BS size and property of Kamaboko mirror


Suspension thermal noise

Values are for TM/IM/RM fiber
(test mass/intermediate mass/recoil mass)
Material=Sapphire/Tungsten/BeCu
Structure loss=5e-8/1e-4/5e-6
Fiber length=30cm/50cm/30cm
Fiber d=1.6mm/0.6mm/0.4mm
Clamp loss=0/1e-3/0
Temperature=16K/10K/16K
Mini GAS freq=0.4Hz
HV coupling=1/200
IM/RM mass=60kg/30kg


- · Sapphire fiber Q is a measured value
- Fiber length has been reduced to move a violin-mode peak
 *40cm -> 150Hz, 30cm -> 235Hz
- Vertical resonance at 117Hz is hard to move away;
 thus HV coupling and IM/RM loss requirements are strict

Quantum noise

- For DRSE, ϕ =86.5 deg, ζ =134.2 deg
- For BRSE, ζ =119.3 deg
- The best sensitivity is better with DRSE
- Bandwidth is broader with BRSE
- · QN exceeds the SQL at around a certain frequency

Sensitivity summary

- Inspiral range for NSNS binaries is 273Mpc
- Default configuration is DRSE but compatible with BRSE (IR=245Mpc w/BAE, 232Mpc w/o BAE)
- LCGT goal (220Mpc; 2 events per year) can be achieved even with 10% sensitivity reduction by technical noise

Requirements to Subsystems

Laser: 150W, FN, IN

IOO: 60% transmission of TEM00 carrier, MZ noise

Mirror: opt loss<45±15ppm, substrate abs<600ppm,

coating abs<0.5ppm, the rest has been introduced

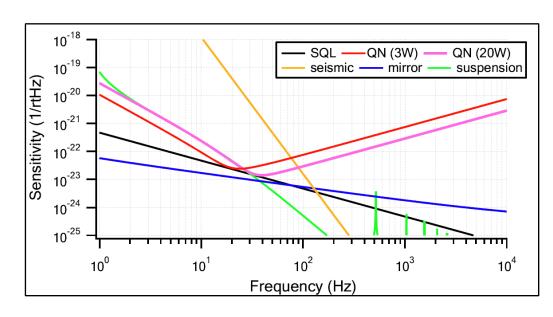
Suspension: thermal conductivity>0.128/T^{2.75}, the rest has

been introduced

Isolation: seismic noise (2e-17/f^6.5)[1/rtHz]

Vacuum: (TBD)

Cleanliness: (TBD)


ISC + Electronics: LSC/ASC Loop noise

Digital: digital noise

etc. etc. ..

I'll talk about this on Saturday

Toward the construction (iLCGT)

- FPMI at room temperature
- · 3-stage suspension
- 10kg silica mirrors
- Finesse 1550
- 1-month observation in 2014

Parameters to be determined on iLCGT construction

- Tunnel tilt
- Vacuum level
- · Cleanliness
- Vacuum-chamber location (detune/folding)
- MC design
- · BS