NIKHEF

TECHNICAL PROJECTS

- CRYOLINKS
- LINEAR ALIGNMENT
- IMC END MIRROR
- PHASE CAMERA
- SEISMIC SUSPENSIONS

Jo van den Brand, Nikhef

CRYOLINKS

LINEAR ALIGNMENT

Quadrant photodiode front-ends

Demodulator boards Prototype for AdV: 2 – 120 MHz

Henk Groenstege, Nikhef Han Voet, VU University Amsterdam

IMC END MIRROR MADE AT NIKHEF

IMC END MIRROR MADE AT NIKHEF

PHASE CAMERA (2) FOR ADV

David Rabeling, Nikhef

OPTICAL TABLES SUSPENSIONS

- Assembly
 - Nikhef cleanroom
 - Completed

Frans Mul Willem Kuilman Michiel Jaspers Gerrit Brouwer Mark Beker Mathieu Blom

GAS ISOLATION PERFORMANCE

40

20

0

-20

-40

-60

-80

1

Transfer [dB]

Transfer function

- 60 dB above 10 Hz
- Achieved > 65 dB at 20 Hz
- Precise loading
 - Weigh components on bench
 - Decided on frequency setting: 400 mHz
- Quality factor decreases at low frequency

10

Frequency [Hz]

100

GAS TESTS

- Temperature dependence
 - Cleanroom: 16 to 24.2 degrees C
 - Measure
 - Vertical displacement
 - Resonance frequency
- Creep studies

THE OWNER AND

FEA STUDIES

Blade's Base

Clamp

Neutral Axis

Pisa, ...

Affect GAS design

FEA STUDY: TUNING PROCEDURE

Tuning procedure predictions

- Base-tip distance vs load
 - For various x values
 - Optimum predicted at x = 244.8 mm
- Frequency vs load
 - For various x values
 - Tune x to > 244.8 mm
 - Tune within few tenth's of mm

FEA STUDY: BLADE SHAPES

Blade shape optimization

- Shape for LCGT under study
 - Check with prototypes
 - 12% stress reduction
 - Work in progress

GAS PROFILE

Berend Munnicke Eric Hennes, Nikhef

GAS blade shapes

- 3D measuring machine
 - First results (to be corrected for tip radius of probe)
 - About 1 mm differences between the eight blades
 - Small tilt of the keystone?
 - Implications for H/V coupling?

GAS BLADE: MODAL ANALYSIS

- GAS blade rigidly connected to free-moving keystone (0.5 kg) ^{Eric Hennes} Nikhef
 - 80 Hz for two translational/rotational modes
 - 300 Hz for two keystone rotational modes (about horizontal axis)
 - 350 Hz for eight internal blade modes (zero rotation and displacement of keystone)
 - 445, 500 and 720 Hz: two modes, including blade twist
- GAS blade rigidly connected to keystone
 - Keystone can be considered fixed for EIB-SAS

IP ASSEMBLY

IP TUNING

IP tuning set-up

- Frame completed
- Suspend EIB-SAS
- Shaker, accelerometers
- Tune IP counterweight
 - Improve horizontal transfer function
 - Measure transfer functions

Front view Scale: 1:6

Gert Jan Mul

INTERNAL BENCH SUSPENSION TABLES

- Attenuation
 - Horizontal: IP and wires
 - 127 dB (1 fm/rtHz) at 10 Hz
 - Vertical: GAS springs
 - 3 sets of 2 blades
 - Tilt stability
 - Vertical horizontal coupling
 - 1% yields 1 pm/rtHz residual vertical
 - No wands needed
- Criteria and procedures needed
 - GAS systems, short IP legs
 - AdV specs on displ/tilt noise needed
 - Optical paths
 - Layout and access, lower IB
 - Freeze specs ASAP
 - Control issues
 - Sensors, cabling, vacuum separation

A. Bertolini, AEI F. Mul, Nikhef

GAS AS CHAIN ELEMENT

Drum mode at 350 Hz

GAS AS CHAIN ELEMENT

