Large-scale Cryogenic Gravitational-wave Telescope in Japan

APPC11@Shanghai

Nov. 2010

Waseda Inst of Advanced Study

Kentaro Somiya

Gravity, GR, Gravitational waves

Newton's Gravity "Attracting force of Earth & Moon"

Einstein's Gravity"Nonflatness of spacetime"

Dynamic change of spacetime will propagate as a wave.

Einstein's prediction of gravitational waves

(1917)

What if we observe GW?

[image:NASA]

GW penetrates the matters

Info different from EM waves

Last proof of Einstein's predictions

GR

Understanding the early universe

Cosmology

Observation of Black Holes, etc.

Astronomy

Deep core of neutron stars

Nuclear Physics

Ground-based GW detector

Far Galaxy

Supernova explosion, Black hole binaries, etc.

Gravitational Waves

Earth

Massive Astronomical events.

Distance of two objects changes.

Observe the change with big high-power interferometers

- LIGO in US [4km]
- Virgo in Italy [3km]
- GEO in Germany [600m]
- LCGT in Japan [3km] (just funded!!)

~\$120M

GW detectors in the world

~ 2nd generation detectors ~

The more detectors, the more information.

Sensitivity of the detector

Typical sensitivity spectrum of a 2G detector (300K)

- Seismic noise at low frequencies
- Thermal noise at middle frequencies
- Quantum noise at middle-high frequencies

LCGT techniques to improve sensitivity

- Underground detector to lower seismic noise
- Cryogenic mirrors to lower thermal noise
- RSE and optical spring to lower quantum noise

Low thermal noise with cryogenics

- Radiation shield
- Upper mass cooled via heat link

~ pure Aluminum (99.999%) φ=0.15 mm

- Test mass cooled via suspension
- Test mass temperature 20K

~ Sapphire crystal 30kg, Q=1e8

RSE is suitable with cryogenics

The shot-noise level of these two interferometers is same but the power transmitting ITM is less in 2G (RSE)

Resonant Sideband Extraction

Low heat absorption is essential to cool the mirror.

Quantum noise spectrum

This limit cannot be overcome by changing the power.

Standard Quantum Limit (SQL)

Optical spring to overcome SQL

High-freq peak: signal resonance

Optical spring to overcome SQL

- High-freq peak : signal resonance
- Low-freq peak : signal loop via radiation pressure (opt spring)

Response from GW to mirror motion increases so that we can overcome the SQL defined for free mass.

LCGT design sensitivity

- RITM=99.6%, RSRM=85%, RPRM=77%, I=90W
- NS-NS inspiral at 291Mpc can be observed by SN=8

(neutron star; M=1.4Ms)

(for optimal orientation)

Summary and prospect

- LCGT is finally funded and the construction has started
- Advanced techniques to realize extremely high sensitivity
 - Underground
 - Cryogenics with Sapphire mirrors/fibers
 - Detuned RSE configuration with optical spring
- Broadband sensitivity (20Hz a few kHz)
- Inspiral range of 291Mpc for NS-NS binaries
- First observation run in a few years; full configuration in 2016

Baseline-design IFO setup

DC readout

