Gravitational waves from Cosmic strings

Sachiko Kuroyanagi (Tokyo U. of Science) 2013/12/6 第62回重力波交流会

References

S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, J. Silk, PRD 86, 023503 (2012) and PRD 87, 023522 (2013)

Cosmic string?

HEAVY, LONG and FAST strings floating in the Universe

Cosmic string? emits gravitational waves!

Generation mechanism

I. Phase transition in the early Universe \rightarrow Grand unification theory

2. Cosmic superstrings
 → Superstring theory

Cosmic strings provides insight into fundamental physics

The Universe has experienced phase transitions!

Higgs mechanism

Phase transition in the early Universe

Symmetry breaking phase transition

Vacuum energy: high

Vacuum energy: low

Generation mechanism I: phase transition

Generation mechanism I: phase transition

Generation mechanism I: phase transition

$$\mu$$
 : tension = line density
G μ = μ /m_{pl}²

G μ ~ the potential energy of the high-energy vacuum

~ the energy scale of the phase transition

Example:

GUT phase transition (~10¹⁶GeV)

 \rightarrow G μ ~ 10⁻⁶

→ 10 km length of string weighs as much as the earth Generation mechanism 2: Cosmic superstrings

Cosmological size D-strings or F-strings remains after inflation in superstring theory

Difference from phase transition origin

p:recconection probability

Phase transition origin: p=1D-string: p=0.1-1F-string: $p=10^{-3}-1$

Cosmic string network Mixture of infinite strings and loops

Many simulation works going on...

Evolution of cosmic strings

 \rightarrow easily dominates the energy density of the Universe

Evolution of cosmic strings

Loops lose energy by emitting gravitational waves

Evolution of cosmic strings

Gravitational waves from cosmic strings

Strong GW emittion from singular points called kinks and cusps

gives dominant contributions

Rare Burst: GWs with large amplitude coming from close loops

Gravitational wave background (GWB): superposition of small GWs coming from the early epoch

Estimation of the GW burst rate

GW burst rate = $\int dt$ (GW emission per I loop × Number density of loops)

Initial number density of loops = $(P\alpha)^{-1}$

(naive estimation)

Not to dominate the Universe...

infinite strings

should lose O(I) Hubble length per I Hubble time

= should reconnect O(I) times per Hubble time \rightarrow more loops for small α

 \rightarrow for small p, string density should increase to reconnect O(I) times

Evolution of a loop

Parameter dependences of the rate

- The parameter dependences of the large burst (rare burst) and small burst (GWB) are different because they are looking at different epoch of the Universe
 - → give different information on cosmic string parameters

Spectrum of the GWB

Spectrum of the GWB

Spectrum of the GWB

Observations of GWs

Cross correlate the signals from two or more detector and extract stable GWs

→ provide different information on cosmic strings

Gravitational wave experiments

Direct detection

Ground : Advanced-LIGO、KAGRA、 Virgo、IndIGO Space : eLISA/NGO、DECIGO

- Pulsar timing: **SKA**
- CMB B-mode polarization: Planck, CMBpol

KAGRA image (<u>http://gwcenter.icrr.u-tokyo.ac.jp</u>/)

eLISA image (http://elisa-ngo.org/)

DECIGO image, S. Kawamura et al, J. Phys.: Conf. Ser. 122, 012006 (2006)

Also provide different information on cosmic strings

Current constraints on cosmic string parameters

LIGO-Virgo collaboration arXiv:1310.2384 [gr-qc]

LIGO S5, S6 + VIRGO 625-day burst search

- $G\mu$: tension (line density)
- α : initial loop size L $\sim \alpha$ H⁻¹
- p : reconnection probability

α

α

 $\log_{10}{
m p}$

log₁₀ p

Summary

Future GW experiments will be a powerful tool to probe cosmic strings

- It is important to obtain hints on fundamental physics such as particle physics and superstring theory.
- Two different GW observables (rare burst and GWB) provide different information on cosmic string parameters.
- Combination with CMB or Pulser timing also helps to get stronger constraints, depending on the value of the parameters.
- Space GW missions are extremely powerful to probe cosmic strings!